Correlation Functions of a Homogeneously Driven Granular Fluid in Steady State

Katharina Vollmayr-Lee Bucknell University, USA and Timo Aspelmeier, Annette Zippelius Georg-August-Universität Göttingen, Germany

March 18, 2009

Model & Simulation

Hard Spheres, 3 dim.

Dissipation

- $\vec{n} \cdot (\vec{v_1}' \vec{v_2}') = -\epsilon \vec{n} \cdot (\vec{v_1} \vec{v_2})$ $\epsilon = \text{coefficient of normal restitution}$
- Nonequilibrium Steady State
- Volume Driving
 - $\frac{d}{dt}\vec{v_i} = \left(\frac{d}{dt}\vec{v_i}\right)_{\text{coll}} + \vec{\xi_i}(t)$ [van Noije et al. 1999]
 - ► $\xi_i(t)$ Gaussian white noise with $\langle \vec{\xi} = 0 \rangle$ and $\langle \xi_{i\alpha}(t) \xi_{j\beta}(t') \rangle = \xi_0^2 \delta_{ij} \delta_{\alpha\beta} \delta(t - t')$
 - to conserve total momentum globally fixed pairs with opposite kicks
- Event Driven Simulations
 - ▶ N = 200000
 - Volume Fractions $\eta = 0.05, 0.1, 0.2, 0.3, 0.4$
 - $\epsilon = 1.0$ (elastic), 0.9, 0.8

Incoherent Intermediate Scattering Function

$$F_{\mathsf{incoh}}(q,t) = \langle \frac{1}{N} \sum_{i=1}^{N} \mathsf{e}^{i \vec{q} \cdot (\vec{r}_i(t) - \vec{r}_i(0))} \rangle$$

- \blacktriangleright dependence on $\epsilon \ \& \ \eta$
- not dense enough for glassy behavior
- Gaussian approximation?
- relaxation time au

Gaussian Approximation of $F_{incoh}(q,t)$

$$F_{\mathsf{incoh}}(q,t) = \mathsf{e}^{-\frac{1}{6}q^2 \langle \frac{1}{N} \sum\limits_{i=1}^{N} (\vec{r}_i(t) - \vec{r}_i(0))^2 \rangle}$$

good approximation

• similarly for other η, ϵ, q

Relaxation Time

- τ rapidly increasing with increasing η
- \blacktriangleright faster increase for larger ϵ

• compare:
$$\eta_{glass} = 0.58$$

Incoherent Intermediate Scattering Function

- time superposition for all η but smallest
- curves are of same shape
- similarly for other q, ϵ

Intermediate Scattering Function

$$F(q,t) = \frac{1}{N} \langle \sum_{i=1}^{N} \sum_{j=1}^{N} e^{i\vec{q} \cdot (\vec{r}_i(t) - \vec{r}_j(0))} \rangle$$

- Damped Sound Wave
- Simplified Model: F(q,t) = ^{ξ₀h}/_{4c²Γq²}e^{-Γq²t} cos(cqt)
 ▶ work in progress for more

statistics

$$C_t(q,t) = \frac{1}{2N} \langle \sum_{i=1}^N \sum_{j=1}^N [\hat{q} \times \vec{v}_i(t)] \cdot [\hat{q} \times \vec{v}_j(0)] e^{i\vec{q} \cdot (\vec{r}_i(t) - \vec{r}_j(0))} \rangle$$

Longitudinal Current Correlation Function

$$C_l(q,t) = \frac{1}{N} \langle \sum_{i=1}^N \sum_{j=1}^N \hat{q} \cdot \vec{v}_i(t) \, \hat{q} \cdot \vec{v}_j(0) \mathsf{e}^{i\vec{q} \cdot (\vec{r}_i(t) - \vec{r}_j(0))} \rangle$$

Spectrum of Longitudinal Current Fluctuations

- dispersion relation linear for small q
- fit: $f_{\max} \propto q^{0.94}$

- $F_{incoh}(q,t)$:
 - Gaussian
 - $\tau(\eta)$ divergence
 - time-superposition
- Damped Soundwaves $(F(q,t), C_l(q,t))$

Acknowledgments:

Support from Institute of Theoretical Physics, University Göttingen

Relaxation Time

- \blacktriangleright τ incr. with incr. η
- compare: $\eta_{glass} = 0.58$

• for
$$\epsilon = 0.8 \ \tau \propto \eta^{1.6}$$

Longitudinal Current Correlation Function

$$C_l(q,t) = \frac{1}{N} \langle \sum_{i=1}^N \sum_{j=1}^N \hat{q} \cdot \vec{v}_i(t) \, \hat{q} \cdot \vec{v}_j(\mathbf{0}) \mathrm{e}^{i \vec{q} \cdot (\vec{r}_i(t) - \vec{r}_j(\mathbf{0}))} \rangle$$

damped soundwave