Katharina Vollmayr-Lee Glass Intro & Single Particle Jumps

Molecular Dynamics Simulation

Summary of SiO₂ Results

[C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53

Single Particle Jump Dynamics:

- ► Jump-Size and Time in Cage t_w-independent!
- ► Number of Jumping Particles t_w-dependent

[KVL, R. Bjorkquist, L. Chambers, PRL 2013]

Comparison:

compare with fragile glass former [Warren, Rottler],[Helfferich et al.]

Surprising similarity of strong and fragile glass formers

Newest SiO₂ Results

Clusters of Jumping Particles

- Cluster size distribution exponetial (SiO₂; 100000 particles) (summer 2014 REU: Jonathan Cookmeyer; [APS March 2015])
- Cluster size distribution power law (binary LJ; 1000 particles) ([KVL & E. A. Baker, EPL 76, 1130 (2006)])
- \longrightarrow Cluster Size Analysis for 100000 binary LJ