Random Walks

1. Uniform Random Numbers

1a. Copy the program
`~kvollmay/classes.dir/capstone_s2005.dir/random_walks.dir/float_rand0-1.cc`
into your working directory. Compile the program and let it run. Have a look at the
program to learn how to get random numbers. Whenever you want to write a program
in which you use random numbers you need to do the following step:
1. Include in the header of your program the two lines:

   ```
   double randomd(long *);
   long idummy = -7;
   ```

2. Include at the end of your program the definition of the function randomd, i.e. lines
 19-49 of `float_rand0-1.cc`.
3. whenever you want another random number use
 `randomd(&idummy)`

1b. Have a look at which random numbers you get: To do so set up the following unix-
command:
```
executable | gawk '{print NR,$0}' | xgraph -m -nl
```

2. Probability

2a. Write a program that prints 500 numbers. Each number is with probability $p = 0.3$
 “1” and otherwise “0”. Run the program and check it with xgraph as in 1.

2b. Change your program from 2a. such that it reads in from screen the probability p and
 the number of random numbers N. The program then produces N numbers, where
 each number is with probability p “1” and otherwise “0”. Use an array to store the N
 numbers. The program then counts and prints out how many of the drawn numbers are
 “1” and how many are “0”. Run your program a few times for different values of p and
 N.

3. Random Walk in One Dimension

3a. Modify your program of 2a. to program a random walk in one dimension on a lattice.
 Set the probability P to hop to the right (length 1). Use a constant for P and start with
 $P = 0.5$. Use `NSTEPS = 5000` time steps. Start with $x = 0$ and print $x(t)$. Have a look
 at your result with `xgraph`. Rerun your program for $P = 0.2$;

3b. Get me before you work on this program. Set $P = 0.5$. The next step is a preparation
 for 3c. Our goal in 3c will be to determine $\langle x \rangle(N)$ and $\langle x^2 \rangle(N)$ where N is the number
 of random steps. Determine for $N =\text{NSTEPS}=5000$ what the final x and x^2 is. Find for
 `NORUNS = 1000` simulation runs of your random walk the average value for the final (after
 `NSTEPS` random walk steps) x and x^2.

3c. Definitely get me before you work on this program. Next store your averages of
 x and x^2 in an array to obtain $\langle x \rangle(N)$ and $\langle x^2 \rangle(N)$. As result of your program print
 three columns N, $\langle x \rangle(N)$, and $\langle x^2 \rangle(N)$. Look at N, $\langle x \rangle(N)$. Run your program with
 `executable.out > outfile`. Then look at $\langle x \rangle(N)$ with `xgraph -m outfile` and at
 $\langle x^2 \rangle(N)$ with `gawk '{print $1,$3}' outfile | xgraph -m`. Does your result agree
 with the theory? Repeat the simulation but with $P = 0.2$ instead. Does your result agree
 with the theory?
3. Random Walk in One Dimension

3d. Copy

`~kvollmay/classes.dir/capstone_s2005.dir/random_walks.dir/rand3b.cc`

into your working directory. You will modify this program in 3e. to determine \(\langle x \rangle (N) \) and \(\langle \Delta x^2 \rangle (N) \). Explain what the program `rand3b.cc` does. Make a flow chart of the program.

3e. Get me before you work on this program. Modify `rand3b.cc` such that it stores your sums of \(x \) and \(x^2 \) in an array to obtain \(\langle x \rangle (N) \) and \(\langle x^2 \rangle (N) \). As result of your program print three columns \(N \), \(\langle x \rangle (N) \), and \(\langle \Delta x^2 \rangle (N) \). Run your program with `executable.out > outfile`. Then look at \(\langle x \rangle (N) \) with `xgraph outfile` and look at \(\langle \Delta x^2 \rangle (N) \) with `gawk '{print $1,$3}' outfile | xgraph`. Does your result agree with the theory?

3f. Repeat 3e but with \(P = 0.2 \) instead. Does your result agree with the theory?

Fractal Growth: DLA

1. Flow Chart Get together in groups of two and draw the flow chart for the DLA-program. Your flow chart should be for a program which grows a cluster of `NPARTMAX` particles. Which loops do you need? Which decision statements do you need?

2. Random Walk in Two Dimensions Copy

`~kvollmay/classes.dir/capstone_s2005.dir/fractal.dir/DLA2_sample.cc`

into your working directory. Add to the program the random walk step (see “add here the random walk step in two dimensions \((x,y)\)”). Print the complete lattice after every random walk step. Look at your result with `executable.out | DynamicLattice -nx 100 -ny 100 -matrix`.