Sound Waves in a Homogeneously Driven Granular Fluid in Steady State

Katharina Vollmayr-Lee Bucknell University, USA and Annette Zippelius, Timo Aspelmeier Georg-August-Universität Göttingen, Germany

March 17, 2010

Model & Simulation

Hard Spheres, 3 dim.

Dissipation

- $\vec{n} \cdot \left(\vec{v_1}' \vec{v_2}'\right) = -\epsilon \vec{n} \cdot \left(\vec{v_1} \vec{v_2}\right)$ $\epsilon = \text{coefficient of normal restitution}$
- Nonequilibrium Steady State
- Volume Driving
 - $\stackrel{\text{d}}{=} \frac{d}{dt} \vec{v_i} = \left(\frac{d}{dt} \vec{v_i}\right)_{\text{coll}} + \vec{\xi_i}(t) \qquad \text{[van Noije et al. 1999]}$
 - $\xi_i(t)$ Gaussian white noise with $\langle \vec{\xi} = 0 \rangle$ and $\langle \xi_{i\alpha}(t) \xi_{i\beta}(t') \rangle = \xi_0^2 \delta_{ij} \delta_{\alpha\beta} \delta(t-t')$
 - to conserve total momentum globally fixed pairs with opposite kicks
- Event Driven Simulations
 - ► N = 10000
 - Volume Fractions $\eta = 0.05, 0.1, 0.2$

 - each 100 independent simulation runs

Dynamics of Driven Granular Fluid in Steady State

Intermediate Scattering Function Longitudinal Current Correlation Function

 \implies damped soundwave

Outline

Theory:

- simplified model
- model including thermal fluctuations

Longitudinal Current Correlation Function

Damped Soundwave:

- with increasing η :
 - more damped
 - increasing ω_0

Longitudinal Current Correlation Function

Damped Soundwave:

- with increasing η :
 - more damped
 - \bullet increasing ω_0
- ▶ with increasing *q*:
 - more damped
 - increasing ω_0

Longitudinal Current Correlation Function

Damped Soundwave:

- with increasing η :
 - more damped
 - \bullet increasing ω_0
- ► with increasing *q*:
 - more damped
 - increasing ω_0
- with decreasing ϵ :
 - more damped
 - increasing ω_0

Spectrum of Longitudinal Current Fluctuations

 $C_{l}(q, f)$:

- with increasing η, q :
 - peak shifts to right
 - width increasing
- little dependence on ϵ :

Dispersion Relation via $C_{l}(q, f)$

- increasing f_{\max} :
 - with increasing q
 - with increasing η

Dispersion Relation via $C_{l}(q, f)$

- increasing f_{\max} :
 - with increasing q
 - with increasing η
- ► for small q linear
- \blacktriangleright slope increases with increasing η

Dispersion Relation via $C_{l}(q, f)$

- increasing f_{\max} :
 - with increasing q
 - with increasing η
- for small q linear
- \blacktriangleright slope increases with increasing η
- \blacktriangleright almost independent of ϵ

Dynamic Structure Factor F(q, f)

Simplified Model Without Coupling to Temperature

$$\partial_t \delta n = -ik n_0 u$$

$$\partial_t u = -\frac{ik}{\rho_0} \frac{p_0}{n_0} \delta n - \nu_1 k^2 u + \xi$$

[van Noije et al., PRE 59, 4326 (1999)]

Extended Model With Coupling to Temperature

$$\partial_t \delta n = -ik n_0 u$$

$$\partial_t u = -\frac{ik}{\rho_0} \left(\frac{p_0}{n_0} \delta n + \frac{p_0}{T_0} \delta T \right) - \nu_1 k^2 u + \xi$$

$$\partial_t T = -D_T k^2 \delta T - \frac{2p}{dn_0} k u - \gamma_0 \omega_{\rm E} \chi \frac{T_0}{n_0} \delta n - 3\gamma_0 \omega_{\rm E} \delta T + \theta$$

[van Noije et al., PRE 59, 4326 (1999)]

Conclusions

- damped sound waves
- \blacktriangleright $C_{l}(q, f)$:
 - f_{\max} increasing with increasing η, q
 - f_{\max} linear for small q
 - \blacktriangleright width increasing with increasing η,q
 - \blacktriangleright only msall dependence on ϵ
- hydrodynamic model:
 - ▶ good fit for F(q, f)
 - thermodynamic fluctuations present

Acknowledgments:

Support from Institute of Theoretical Physics, University Göttingen