Aging of a Glass: A Computer Simulation

Katharina Vollmayr-Lee, Jake Roman, Jürgen Horbach Bucknell University

Acknowledgments: A. Zippelius & Institute of Theoretical Physics, University Göttingen, Germany

Introduction: Glass

Glass: → system falls

out of equilibrium

Structure: discordered

Introduction: Glass

Glass: → system falls out of equilibrium

Structure: discordered Dynamics: frozen in

Introduction: Dynamics

[C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53 (1976)]

- slowing down of many decades
- strong and fragile glass formers
- ► SiO₂ strong glass former

System: SiO_2

[S. Stoeffler and J. Arndt, Naturwissenschaften 56, 100 (1969)

Model: BKS Potential

[B.W.H. van Beest et al., PRL 64, 1955 (1990)]

$$\phi(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} e^{-B_{ij} r_{ij}} - \frac{C_{ij}}{r_{ij}^6}$$

112 Si & 224 O $\rho = 2.32 \text{ g/cm}^3$ $T_c = 3330 \text{ K}$

- rich phase diagram
- similar to water (H₂O)

Numerical Solution: Euler Step

↓ = Iteration Step:

 $x(t+\Delta t)=x(t)+v(t)\Delta t$ $v(t+\Delta t)=v(t)+a(t)\Delta t$ a(t)=F(t)/m=-(dU/dx)(t)

Molecular Dynamics Simulation

Dynamics: Aging to Equilibrium

Partial Structure Factors

$$S_{\alpha\beta}(q, t_{\mathbf{w}}) = \frac{1}{N} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} e^{i\vec{q} \cdot (\vec{r}_i(t_{\mathbf{w}}) - \vec{r}_j(t_{\mathbf{w}}))}$$

- $\blacktriangleright t_{\rm w}$ dependence weak
- ▶ in following:
 - $C_q(t_w, t_w + t)$ (mostly q of FSDP) • $\Delta r^2(t_w, t_w + t)$

$$C_q(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}))}$$

$$C_q(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}))}$$

$$C_q(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}))}$$

- $t_{\rm w}$ small:
 - $t_{\rm w} = 0 \& t \lesssim 5 \cdot 10^{-5}$ ns: $T_{\rm i}$ good approx.
 - no plateau
 - \bullet decay $t_{\rm w}\text{-dependent}$
- ► t_w intermediate:
 - plateau $t_{\rm w}$ -indep.
 - \bullet decay $t_{\rm w}\text{-dependent}$
- t_w large: t_w -indep. \longrightarrow equilibrium

Plateau Height

$$C_q(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}))}$$

- \blacktriangleright $t_{\rm w}$ small:
 - $t_{\rm w} = 0 \& t \lesssim 5 \cdot 10^{-5}$ ns: $T_{\rm i}$ good approx.
 - no plateau
 - decay $t_{\rm w}$ -dependent
- ► t_w intermediate:
 - plateau $t_{\rm w}$ -indep.
 - decay $t_{\rm w}$ -dependent
- ► t_w large: t_w -indep. → equilibrium

Decay Time

$$C_q(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}))}$$

- $t_{\rm w}$ small:
 - $t_{\rm w} = 0 \& t \lesssim 5 \cdot 10^{-5}$ ns: $T_{\rm i}$ good approx.
 - no plateau
 - \bullet decay $t_{\rm w}\text{-dependent}$
- ► t_w intermediate:
 - plateau $t_{\rm w}$ -indep.
 - \bullet decay $t_{\rm w}\text{-dependent}$
 - time superposition ?
- ► t_w large: t_w -indep. → equilibrium

- $\blacktriangleright t_w$ small: no time superposition
- \blacktriangleright t_w intermediate: time superposition
- \blacktriangleright t_w large: superposition includes equilibrium curve

LJ: [Kob & Barrat, PRL 78, 24 (1997)]

- *t_w* small:
 no superposition
- ► t_w intermediate: superposition of $C_{q'}(C_q)$ $\Rightarrow h$ indep.of C_q
- t_w large: superposition includes equilibrium curve

LJ: [Kob & Barrat, EPJ B 13, 319 (2000)]

Mean Square Displacement

$$\Delta r^{2}(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{r}_{i}(t_{\rm w} + t) - \mathbf{r}_{i}(t_{\rm w}) \right)^{2}$$

Mean Square Displacement

Summary

$$C_q(t_{\rm w}, t_{\rm w} + t)$$
 and $\Delta r^2(t_{\rm w}, t_{\rm w} + t)$:
Three $t_{\rm w}$ Ranges:

- \blacktriangleright $t_{\rm w}$ small:
 - $t_{\rm w} = 0$ and t small: $T_{\rm i}$ good approx.
 - \bullet dependent on $t_{\rm w}$, $T_{\rm i}$, $T_{\rm f}$
- ► *t*_w intermediate:
 - \bullet plateau indep. of $t_{\rm w}$ and T_i
 - C_q time superposition (not Δr^2)

•
$$C_q^{AG}\left(\frac{h(t_w+t)}{h(t_w)}\right)$$
: h is C_q indep.

- ► t_w large:
 - indep. of t_w and $T_i \longrightarrow$ equilibrium
 - for C_q equilibrium included in superposition

Past & Future:

Binary Lennard Jones:

- jumps [KVL, JCP 121, 4781 (2004)]
- self-organized criticality (correlated jumps) [KVL,E.A. Baker, EPL 76, 1130 (2006)]

 SiO_2 :

- aging to equilibrium [to be submitted to PRE]
- ▶ local C_q [A. Parsaeian, H.E. Castillo, KVL, to be published]
- jumps (R. Bjorkquist, L. Chambers)

Acknowledgments:

A. Zippelius & Institute of Theoretical Physics, University Göttingen, Germany