
February 10, 2011 CAPS 491-11 Spring 2011

In-Class Work: Game Of Life

1. Initialization And Printing

Copy
~kvollmay/classes.dir/capstone s2011.dir/unix C++ intro.dir/C++9d.cc

into your working directory or use your program for the C++ in-class work 9d. This program
initializes the game of life lattice. Run the program and remind yourself of how it works.

2. Von Neumann Neighbors

0 0 0 00
0 0 0 00
0 0 00

00
0 0 0 00
1 1 1

1

0 0 0 00
0 0 0 00
0 0 00

00
0 0 0 00
1 1 1

1

0 0 0 00
0 0 0 00
0 0 00

00
0 0 0 00
1 1 1

1

0 0 0 00
0 0 0 00
0 0 00

00
0 0 0 00
1 1 1

1

Fig.1A Fig.1B Fig.1C Fig.1D

2a. For each case of Fig.1A-D add you your program one line which prints the value of the
boxed lattice site. What are indices i and j of lattice[i][j] of the boxed lattice site?

2b. For each case of Fig.1A-D circle the von Neuman neighbors of the boxed lattice site using
periodic boundary conditions. What are the indices of the neighbor sites.

2c. Write a program which determines for the cases of Fig.1B-D the number of living neigh-
bors.

2d. Given any lattice site (i, j) what are the four von Neumann neighbor sites? Answer for
now the question for a lattice site not on the boundary, so assume a site (i, j) in the middle
of a large lattice.

2e. Now let’s take care of the periodic boundary conditions as well. Given any lattice
site (i,j) what are the four von Neumann neighbor sites using periodic boundary conditions?
Hint: To avoid many different if-statements, there is an elegant way to take into account
the periodic boundary conditions by using the modulo function %. Examples for the use of
the modulo function: 7 % 5 = 2, 7 % 6 = 1, 20 % 6 = 2; so the modulo function gives
you the remainder of the integer devision.
Note: Yes, this is not easy.

2f. (if time) You are now ready to add to your program that it reads in a lattice site (i,j)
and passes back the number of living von Neumann neighbors of the site (i,j) using periodic
boundary conditions. Check your result for different values of (i,j).

2g. Do the same as in 2f. but write a function which has as input the lattice and the indices
of the lattice site and returns the number of living neighbors.
Hint: To define (and similarly to declare) the function use for example:
int vonNeumann (const int lattice [LATSIZE][LATSIZE],int isite,int jsite);

3. Apply Game of Life Rules (if time)

3a. Look at the flow chart and sketch how the detailed flow chart looks for “Apply Rules”,
i.e. plan how you will add to your program that the rules are applied. Please get me when
you are done with this part.

3b. Now use your program of 2g and add to it the update rules. Follow the rules of game of
life to determine the new value of each cell.Notice that you need for this two two-dimensional
arrays. For example if your lattice is called lattice then while you determine the new lattice
sites determine the neighbors with lattice, but write the new cell values into another array,
e.g. newlattice. Print the updated lattice newlattice.

3c. Since our initial lattice is not testing every update rule (and is a bit boring), use instead
another initial lattice. Copy
~kvollmay/classes.dir/capstone s2011.dir/game of life.dir/init 5x5 rand.data

into your working directory and change your program such that this lattice is read in from this
file. To test your program print the initial lattice.

3d. Now apply the rules to this lattice. Check your program by printing the updated lattice
(newlattice) and compare with
~kvollmay/classes.dir/capstone s2011.dir/game of life.dir/game3d.data

Uniform Random Numbers: (IF TIME)

a. Copy the program
˜kvollmay/classes.dir/capstone s2011.dir/traffic.dir/float rand0-1.cc
into your working directory. Compile the program and let it run. Scan the header and main
of the program to learn how to get random numbers. Do not try to understand the function
randomd itself. Random function generators are an art for itself, and we just use this random
number generator because it is a very well working one. Whenever you want to write a program
in which you use random numbers you need to do the following step:
1. Include in the header of your program the two lines:

double randomd(long *);

long idummy = -7;

2. Include at the end of your program the definition of the function randomd, i.e. lines 28–58
of float rand0-1.cc.
3. whenever you want another random number use randomd(&idummy)

b. Have a look at which random numbers you get:
float rand0-1.out | gawk ’{print NR,$1}’
and to see the numbers graphically
float rand0-1.out | gawk ’{print NR,$1}’ | xgraph -m -nl

c. You may use this random-number generator to make your own random initial lattice
configurations.

February 15, 2011 CAPS 491-11 Spring 2011

In-Class Work: Game Of Life

3. Apply Game of Life Rules

3a. Look at the flow chart and sketch how the detailed flow chart looks for “Apply Rules”,
i.e. plan how you will add to your program that the rules are applied. Please get me when
you are done with this part.

3b. Copy into your working directory
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game2.cc

or, if your program for 2g from last class was working, you may use your working program.
Now add to the program the update rules; i.e. follow the rules of game of life to determine
the new value of each cell. Remember that you need for this two two-dimensional arrays.
For example if your lattice is called lattice then while you determine the new lattice sites
determine the neighbors with lattice, but write the new cell values into another array, e.g.
newlattice. Print the updated lattice newlattice.

3c. Since our initial lattice is not testing every update rule (and is a bit boring), use instead
another initial lattice. Copy
~kvollmay/classes.dir/capstone s2011.dir/game of life.dir/init 5x5 rand.data

into your working directory and change your program such that this lattice is read in from this
file. To test your program print the initial lattice.

3d. Now apply the rules to this lattice. Check your program by printing the updated lattice
(newlattice) and compare with
~kvollmay/classes.dir/capstone s2011.dir/game of life.dir/game3d.data

4. Finish Game of Life Program Add the time loop (see flow chart) and check your
result after 10 timesteps with the result in game4.data.

5. Movie (if time)

5a Let us make a movie of the game of life. If your executable is called game4.out then type
on the commandline
game4.out | DynamicLattice -nx 5 -ny 5 -matrix

this is a good option for long movies, for short movies you may use instead
game4.out > game4_movie; DynamicLattice -nx 5 -ny 5 -matrix < game4_movie

where the semicolon had the purpose of separating two consecutive commands, so could have
been replaced with enter. Please notice, that the movie was made simply by printing the
matrix a few times and each picture/matrix being separated by a single additional newline
command, i.e. a single empty line (as we did in in-class work 9f on February 1).

5b Notice that the movie was too fast and you did not know which picture corresponds to
which time. DynamicLattice allows you to both slow down as well as to print text under each
picture. You can do so by adding in the program before main the constant definition
const int PAUSEVALUE = 4;

and by changing printlattice to not only reading in the lattice but also the time and then also
adding the following two lines in printlattice before the printing of the matrix
cout << "#pause " << PAUSEVALUE << endl;

cout << "#string time= " << time << endl;

where time corresponds to the passed on time of your time-loop. The outcome of your
program should look like
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game5b.data

Play around by changing PAUSEVALUE.

5c Now let’s watch a movie of a 10x10 lattice. Read in the initial configuration
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/init_10x10_rand.data

and change in your program the lattice size from 5 to 10. Rerun your program and adjust the
command of Dynamic Lattice accordingly.

6. Moore and Patterns (IF TIME)

6a. Use your program of 5b that means start with init_5x5_rand.data and instead of
using the von Neumann neighbors use Moore neighbors (up,down, left,right, NE,NW,SE,SW
so diagonal neighbors also included). Hint:Add an additional function Moore by copying the
vonNeumann function and changing it to return the number of Moore neighbors. Check your
result with
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game6a.data

(a) (b) (c)

(f) (g)(e)

(d)

Fig.1: Initial Configurations to be used with Moore neighborhood (see 6b.)

Fig.2: Gosper Glider Gun (see http://en.wikipedia.org/wiki/Conway’s_Game_of_Life

6b. Now start with different initial configurations. Use a 30x30 lattice with all cells dead but
approximately in the middle of the lattice the pattern of Fig.1a of alive cells. Using Dynamic
Lattice watch the pattern how it changes with time. Repeat this for the patterns b - g. (Use
the Moore neighborhood.) For some of the patterns you might want to increase TMAX and
decrease PAUSEVALUE.
6c. Now use a 100x100 lattice and put the Gosper glider gun (see Fig. 2) in the left top of
your lattice. Run the program with the Moore neighborhood and run it for TMAX=500 time
steps. Set PAUSEVALUE=0.

February 17, 2011 CAPS 491-11 Spring 2011

In-Class Work: Game Of Life

5. Movie

5a Let us make a movie of the game of life. Copy into your working directory the solution
program ~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game4.cc

or use your working program. If your executable is called game4.out then type on the
commandline
game4.out | DynamicLattice -nx 5 -ny 5 -matrix

this is a good option for long movies, for short movies you may use instead
game4.out > game4_movie; DynamicLattice -nx 5 -ny 5 -matrix < game4_movie

where the semicolon had the purpose of separating two consecutive commands, so could have
been replaced with enter. Please notice, that the movie was made simply by printing the
matrix a few times and each picture/matrix being separated by a single additional newline
command, i.e. a single empty line (as we did in in-class work 9f on February 1).

5b Notice that the movie was too fast and you did not know which picture corresponds to
which time. DynamicLattice allows you to both slow down as well as to print text under each
picture. You can do so by adding in the program before main the constant definition
const int PAUSEVALUE = 4;

and by changing printlattice to not only reading in the lattice but also the time and then also
adding the following two lines in printlattice before the printing of the matrix
cout << "#pause " << PAUSEVALUE << endl;

cout << "#string time= " << time << endl;

where time corresponds to the passed on time of your time-loop. The outcome of your
program should look like
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game5b.data

Play around by changing PAUSEVALUE.

5c Now let’s watch a movie of a 10x10 lattice. Read in the initial configuration
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/init_10x10_rand.data

and change in your program the lattice size from 5 to 10. Rerun your program and adjust the
command of Dynamic Lattice accordingly.

6. Moore and Patterns

6a. Use your program of 5b that means start with init_5x5_rand.data and instead of
using the von Neumann neighbors use Moore neighbors (up,down, left,right, NE,NW,SE,SW
so diagonal neighbors also included). Hint:Add an additional function Moore by copying the
vonNeumann function and changing it to return the number of Moore neighbors. Check your
result with
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game6a.data

6b. Now start with different initial configurations. Use a 30x30 lattice with all cells dead but
approximately in the middle of the lattice the pattern of Fig.1a of alive cells. Using Dynamic
Lattice watch the pattern how it changes with time. Repeat this for the patterns b - g also
using the Moore neighborhood. (In case we are short on time, look at a,b,d,e.) For some of
the patterns you might want to increase TMAX and decrease PAUSEVALUE.

(a) (b) (c)

(f) (g)(e)

(d)

Fig.1: Initial Configurations to be used with Moore neighborhood (see 6b.)

Fig.2: Gosper Glider Gun (see http://en.wikipedia.org/wiki/Conway’s_Game_of_Life

6c. (ONLY IF TIME) Now use a 100x100 lattice and put the Gosper glider
gun (see Fig. 2) in the left top of your lattice. Run the program with the Moore
neighborhood and run it for TMAX=500 time steps. Set PAUSEVALUE=0. You may use
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/gosperglider.data

for the initial configuration of a 100x100 lattice or if you
would like the function for the initialization you may use
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game8_rndORgosper.cc.

7. Population Growth

7a. Besides watching some cool movies of the game of life let us analyze the simulations
differently. To do so let us go back to the original motivation of the game of life rules. The
lattice values represent people being alive or dead. Change your program of 5. or 6. so that
it does not print the lattice but instead it writes on screen for each time step the time t and
the number of all living cells on the whole lattice N . You can look at the result N(t) e.g. if
your executable is called game7.out then type on the commandline:
game7.out | xgraph -m

7b. To generate some interesting initial configurations you may use some of the sourcecode
~kvollmay/classes.dir/capstone_s2011.dir/game_of_life.dir/game8_rndORgosper.cc

to generate a 100x100 initial configuration. Have a look at N(t). Get me when you have
your resulting N(t).

7c. Measure 〈N〉.

