
March 8, 2011 CAPS 491-11 Spring 2011

In-Class Work: Traffic Flow

1. Uniform Random Numbers

1a. Copy the program
˜kvollmay/classes.dir/capstone s2011.dir/traffic.dir/float rand0-1.cc
into your working directory. Compile the program and let it run. Scan the header and main
of the program to learn how to get random numbers. Do not try to understand the function
randomd itself. Random function generators are an art for itself, and we just use this random
number generator because it is a very well working one. Whenever you want to write a program
in which you use random numbers you need to do the following step:
1. Include in the header of your program the two lines:

double randomd(long *);

long idummy = -7;

2. Include at the end of your program the definition of the function randomd, i.e. lines 28–58
of float rand0-1.cc.
3. whenever you want another random number use randomd(&idummy)

1b. Have a look at which random numbers you get:
float rand0-1.out | gawk ’{print NR,$1}’
and to see the numbers graphically
float rand0-1.out | gawk ’{print NR,$1}’ | xgraph -m -nl

2. Initialize Car Positions

2a. Use the program float rand0-1.cc to write a program that prints (instead of random num-
bers) 500 numbers where each number is “1” with probability PCAR = 0.3 and otherwise “-1”.
Run the program and check it with xgraph as in 1b. And here is a quick way to check how often
1 was chosen: traffic2a.out | gawk ’BEGIN{n=0}{if($1==1) n++}END{print n}’

2b. Use your program from 2a. and use it to initialize a road array of ROADLENGTH=20. Put
on each site a car with probability PCAR=0.3 by assigning a value 1 and otherwise keep the
road site empty by assigning the value -1. Check the program by printing the road.

3. Initialize Road

3a. For the initialization of the road we also will have to initialize the velocity of each car. As
preparation for this task modify your program of 2a such that it prints 500 random numbers
v ∈ {0, 1, . . . , VMAX } (use VMAX=5) by using the random number generator. Hint: You may
use that int converts double to integer, for example int(4.67)=4 and int(3.05)=3.
3b. Now you are ready to initialize the road. Modify your program of 2b to put on each site

of the road a car with probability PCAR and to give each car on the road a random velocity
v ∈ {0, 1, . . . , VMAX } (use VMAX=5).

4. Distance (if time)

Please get me before you start working on the following so that I can explain the next steps.

4a. Next we work on finding the distance between a car and the car in front of it. To get
this distance we will avoid in the following to have to check each site in front of a car if it
is empty or not. Instead we define an additional array: carpos which stores for each car on
the road its position on the road. So if the first car (index 0) on the road is on site 3 then
carpos[0]=3, if the second car is on site 5 then carpos[1]=5, etc.. Add to your program
of 3a. the array carpos and check your program by printing out both the complete road and
the car positions.

4b. Now add to your program that for each car the distance to the car in front of it is
determined and printed out. Take into accout the periodic boundary conditions both to
determine the car in front and to determine the distance.
Comment: This task is more difficult than it might seem at first glance. Please get me after
having thought about this task.

March 10, 2011 CAPS 491-11 Spring 2011

In-Class Work: Traffic Flow

4. Distance

4a. Use your running program for 3b or copy the solution program
~kvollmay/classes.dir/capstone_s2011.dir/traffic3b.cc Next we work on
finding the distance between a car and the car in front of it. To get this distance we will avoid
in the following to have to check each site in front of a car if it is empty or not. Instead we
define an additional array: carpos which stores for each car on the road its position on the
road. So if the first car (index 0) on the road is on site 3 then carpos[0]=3, if the second
car is on site 5 then carpos[1]=5, etc.. Add to your program of 3a. the array carpos and
check your program by printing out both the complete road and the car positions.

4b. Now add to your program that for each car the distance to the car in front of it is
determined and printed out. Take into accout the periodic boundary conditions both to
determine the car in front and to determine the distance.
Comment: This task is more difficult than it might seem at first glance. Please get me after
having thought about this task.

5. Update Velocities

5a. For the update of the velocities we will need a function which determines the smallest
number of three integers. Write a program which reads in three integers, determines via a
function which of these three integers the smallest number is, and prints out the result. Use a
function, so that we can use the same function in our traffic flow program. Test your program
by printing the minimum of each of the three sets: (3,2,10),(1,13,10),(16,14,10).

5b. Use your program of 4b and add to it that it determines all new velocities (and updates
them in the road array), and prints out the road with the new velocities. Compare your result
for the case
(idummy=-7,ROADLENGTH = 20,VMAX = 5, PCAR = 0.3) with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic5b.data

6. Update Positions (if time)

Now you are ready to add to your program the update of the positions. To do so use a new
loop over all cars and update both the carpos array and the road array. For the road make
sure to first copy the new velocity into a variable (e.g. vnew), then empty the old site and
then put the car in road on its new site xnew = xold + vnew with the new velocity. After
the update of all positions print the complete road //(already in traffic4b.cc) and check if it
is what you expected. Using the same parameters as given in 5b compare your result with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic6.data

Test your program further by using PCAR=0.5 and compare again with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic6.data

7. Finish Program (if time)

Now you are set to finish the program for our traffic flow model. Add to your program from
6. the time loop. Compare your result for the case of 100 timesteps and otherwise the same
parameters as in 5b. Compare your output with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic7.data

March 29, 8am: Running Program
Homework for March 22: Continue working on your program. (Writing the program will
take several days, so work on the programming continuously.)

March 22, 2011 CAPS 491-11 Spring 2011

In-Class Work: Traffic Flow

6. Update Positions

Copy the solution program for the velocity update
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic5.cc

or if you had finished already 5. of last class, you may use your working program from last
class. Next add to the program the update of the positions. To do so use a new loop over
all cars and update both the carpos array and the road array. For the road make sure
to first save the new velocity, then empty the old site and then put the car in road on its
new site xnew = xold + vnew with the new velocity. After the update of all positions
print the complete road and check if it is what you expected. Use the same parameters
as in traffic5.cc, namely idummy=-7,ROADLENGTH = 20,VMAX = 5, PCAR = 0.3 and
compare with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic6.data

Test your program further by using PCAR=0.5 and compare again with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic6.data

7. Finish Program

Now you are set to finish the program for our traffic flow model. Add to your program from
6. the time loop. Compare your result for the case of 100 timesteps and otherwise the same
parameters as in 6 with PCAR=0.3. Compare your output with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic7.data

8. Space-Time Diagrams

8a. Now we are ready to have a look at the flow of the cars. To be able to see the main
patterns (and to get nice pictures) use a larger ROADLENGTH (for example = 200). We use
DynamicLattice to make a graph of time over position. Print the road for every time step, as
it was done to get traffic7.data. In case you run your program for 100 timesteps, you get
101 lines, so your DynamicLattice command is for example:
traffic8.out | DynamicLattice -nx 200 -ny 101 -matrix

8b. To distinguish stopped cars easily from driving cars, let’s indicate every empty site instead
of with -1 now with -VMAX. This results in DynamicLattice in empty sites being blue, stopped
cars in white and driving cars in pinkish/red. Look at the space-time diagram.

8c. Vary PCAR. Interpret the resulting space-time diagrams. Once you have several space-
time diagrams for different PCAR, get me so that we can discuss as a class your results.

9. Nagel-Schreckenberg Model

9a. Get me when you get to this part. We are now ready to finish the programming of the
Nagel-Schreckenberg model. Add to your program of 8. the randomization of the velocity,
so complete the Nagel-Schreckenberg Model. Use VMAX = 5, PCAR = 0.2, PDEC = 0.25,

ROADLENGTH = 20, MAXTSTEPS=8 and idummy = -7 and compare your result with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic9a.data

Comment: There are variations in how you might use the random numbers. Therefore, please
get me in case of discrepancies between your and my results.

9b. Now set ROADLENGTH=200 and MAXSTEPS=100 and have a look at the resulting space-time
diagram with DynamicLattice.

9c. Keep all parameters as in 9b but vary
(i) PCAR between 0.05 and 0.35
(ii) PDEC between 0.0 and 0.5
(iii) VMAX between 1 and 10.
What do you observe in each case? Please get me to discuss your observations and to share
your results with the class.

10. Mean Velocity vav(t) (if time)

Use your program from 9. with parameters (idummy=-7, VMAX=5, PCAR=0.2, PDEC=0.25,

ROADLENGTH=1000, and MAXTSTEPS=200) and instead of printing out the road print on the
screen for each time t one line with two numbers: t and vav where vav is the mean velocity:

vav = 1

N

N−1∑

i=0

vi

is the number of cars and vi is the velocity of car i. Compare your result with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic10.data Look at
vav(t) with:
executable | xgraph -m

Get me so that we can discuss your result. Our interpretation is necessary for 11.

11. veq(c) (if time)

For simplicity let us go back to the model without randomized velocities, so use PDEC =
0.0. Set also VMAX = 4 and ROADLENGTH = 1000. You saw in 10. that vav equilibrates
after some time to some value veq around which vav fluctuates. We now want to see how veq

depends on the concentration of cars c =nocars/double(ROADLENGTH).

11 a. Take out of your program from 10. the printing of vav. Add to the program that
you measure vav only if the time t is larger than EQUILSTEPS = 100. Average over these
measured vav which gives you veq. Print out the concentration c and veq. With your program
of 10. (adjust PDEC & VMAX) check if your result of veq seems plausible.

11 b. Now change in your program to use PCAR no longer as constant but instead add a loop
over pcar (0.1 - 1.0) and print out for each pcar the concentration c and veq as you did in
11a. Have a look at your result with xgraph
executable | xgraph -m -nl

Get me, so that we can discuss the result.

11 c. Set PDEC=0.0 and run your program first for VMAX=4 and then for VMAX=2. In
each case redirect the output into a file:
executable > filename Then set PDC=0.25 and run and redirect the output again for
VMAX=2 and 4. Look at the data of the four files with xgraph.

Homework for March 29, 8am: Running Main Project Program (in /share.dir/ and
readpermission)

This Thursday, March 24 class cancelled
Make-Up Class March 29, 8-9:30am

March 29 (8-11am), 2011 CAPS 491-11 Spring 2011

In-Class Work: Traffic Flow

9. Nagel-Schreckenberg Model

9b. Copy the solution program for the complete Nagel-Schreckenberg Model
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic9.cc

or in case you had finished successfully the in-class work 9a. , then you may use your own
program. Familiarize yourself with the program and have a look at the resulting space-time
diagram with
traffic9.out | DynamicLattice -nx 200 -ny 101 -matrix

9c. Keep all parameters as in 9b but vary
(i) PCAR between 0.05 and 0.35
(ii) PDEC between 0.0 and 0.5
(iii) VMAX between 1 and 10.
What do you observe in each case? Interpret your results. Once you have looked at each case
(i)–(iii) please get me to discuss your observations and to share your interpretations with the
class. I will then also give you an introduction to the next step 10.

10. Mean Velocity vav(t)

Use your program from 9. with parameters (idummy=-7, VMAX=5, PCAR=0.2, PDEC=0.25,

ROADLENGTH=1000, and MAXTSTEPS=200) and instead of printing out the road print on the
screen for each time t one line with two numbers: t and vav where vav is the mean velocity:

vav = 1

N

N−1∑

i=0

vi

is the number of cars and vi is the velocity of car i. Compare your result with
~kvollmay/classes.dir/capstone_s2011.dir/traffic.dir/traffic10.data Look at
vav(t) with:
executable | xgraph -m

Get me so that we can discuss your result. Our interpretation is necessary for 11.

11. veq(c)

For simplicity let us go back to the model without randomized velocities, so use PDEC =
0.0. Set also VMAX = 4 and ROADLENGTH = 1000. You saw in 10. that vav equilibrates
after some time to some value veq around which vav fluctuates. We now want to see how veq

depends on the concentration of cars c =nocars/double(ROADLENGTH).

11 a. Take out of your program from 10. the printing of vav. Add to the program that
you measure vav only if the time t is larger than EQUILSTEPS = 100. Average over these
measured vav which gives you veq. Print out the concentration c and veq. With your program
of 10. (adjust PDEC & VMAX) check if your result of veq seems plausible.

11 b. Now change in your program to use PCAR no longer as constant but instead add a loop
over pcar (0.1 - 1.0) and print out for each pcar the concentration c and veq as you did in
11a. Have a look at your result with xgraph
executable | xgraph -m -nl

Get me, so that we can discuss the result.

11 c. Set PDEC=0.0 and run your program first for VMAX=4 and then for VMAX=2. In
each case redirect the output into a file:
executable > filename Then set PDC=0.25 and run and redirect the output again for
VMAX=2 and 4. Look at the data of the four files with xgraph.

12. Flux (IF TIME) Get me before you work on this. Next add to your program the flux

j = c ⋆ veq so that it prints out c, veq, and the flux j. Redirect your output into a file and
have a look at your result for j(c) with gawk ’{print $1,$3}’ filename | xgraph -m

-nl. Use the same parameters as in 11 c. Let’s look together at your result.

