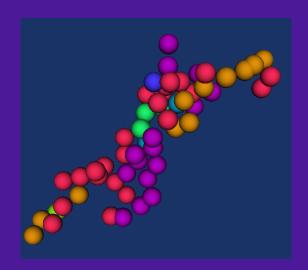
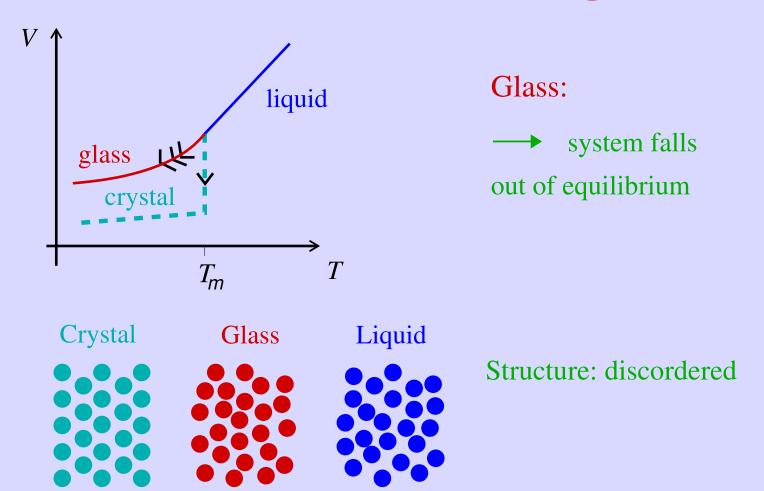
Self-Organized Criticality Below The Glass Transition

Katharina Vollmayr-Lee, Bucknell University
October 15, 2009

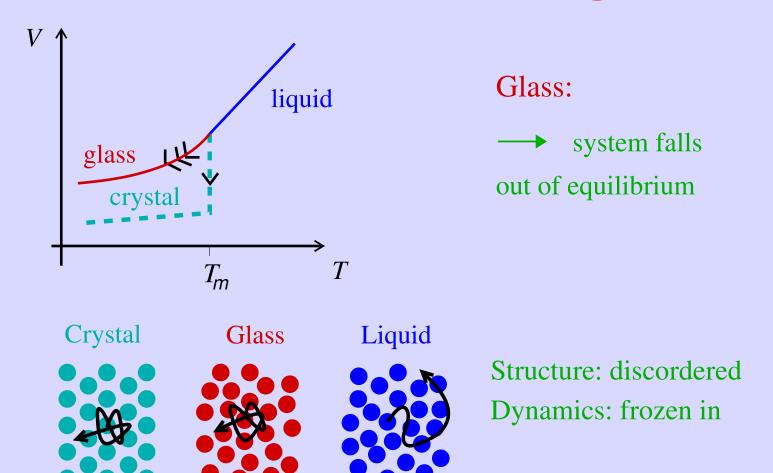


Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach

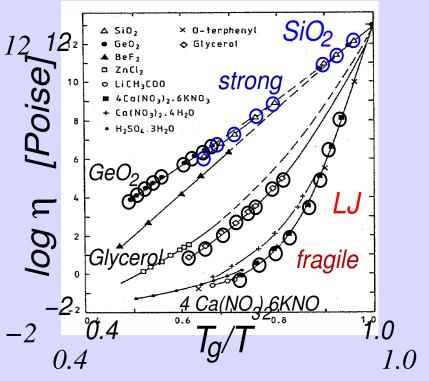
Introduction: Glass



Introduction: Glass



Introduction: Dynamics



[C.A. Angell and W. Sichina, Ann. NY Acad.Sci. 279, 53 (1976)

- slowing downof many decades
- strong and fragile glass formers
- SiO₂ strong glass former (end of talk)
- → LJ fragile glass (here)

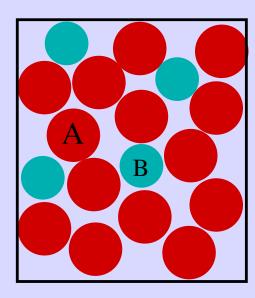
Model

Binary Lennard-Jones System

$$V_{\alpha\beta}(r) = 4 \,\epsilon_{\alpha\beta} \left(\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right)$$

$$\sigma_{\mathsf{AA}} = 1.0$$
 $\sigma_{\mathsf{AB}} = 0.8$ $\sigma_{\mathsf{BB}} = 0.88$ $\epsilon_{\mathsf{AA}} = 1.0$ $\epsilon_{\mathsf{AB}} = 1.5$ $\epsilon_{\mathsf{BB}} = 0.5$

[W. Kob and H.C. Andersen, PRL 73, 1376 (1994)]



800 A and 200 B

Simulations

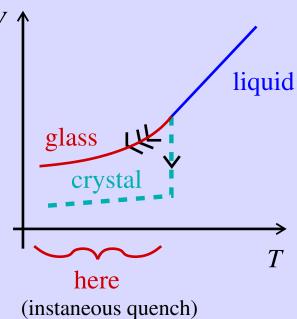
Molecular Dynamics Simulations

Velocity Verlet

below glass transition:

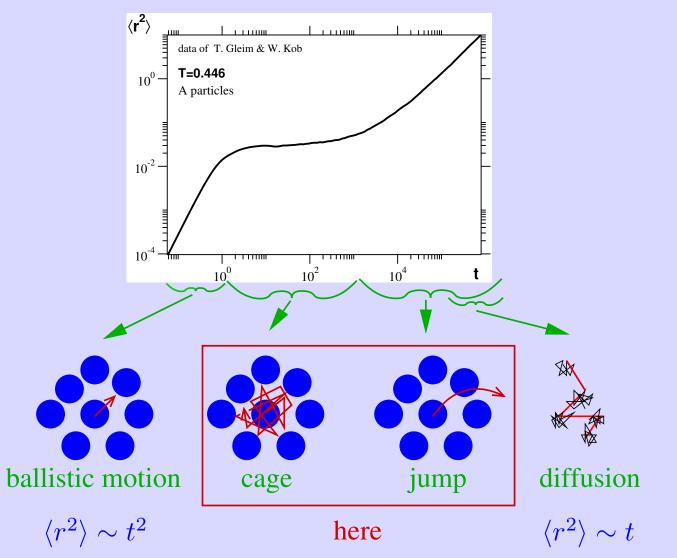
$$T = 0.15 - 0.43$$

MCT: $T_{\rm c} = 0.435$ [W. Kob et al., PRL 73 (1994)]

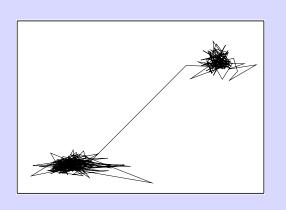


Cage-Picture

Mean-Squared Displacement: $\langle r^2 \rangle(t) = \left\langle \frac{1}{N} \sum_{i=1}^N \left(\underline{r}_i(t) - \underline{r}_i(0)\right)^2 \right\rangle$

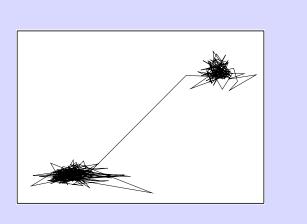


Definition: Jump Occurrence

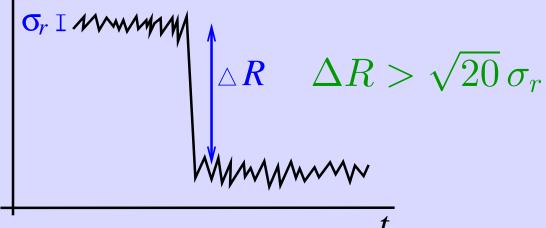


Single Particle Trajectory $\frac{\sigma_r \, \text{Involution}}{\Delta R} \, \Delta R > \sqrt{20} \, \sigma_r$

Definition: Jump Occurrence



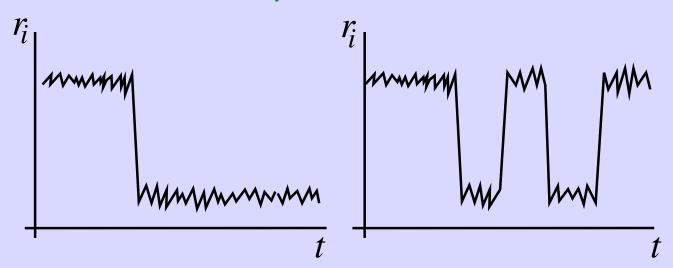
Single Particle Trajectory



Definition: Jump Type

Irreversible Jump

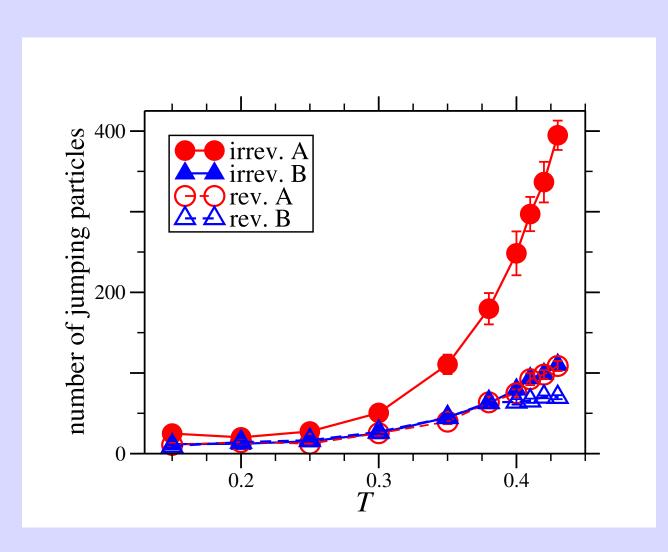
Reversible Jump



Outline

- Jump Statistics
- Correlated Single Particle Jumps
- History Dependence
- Summary & Outlook

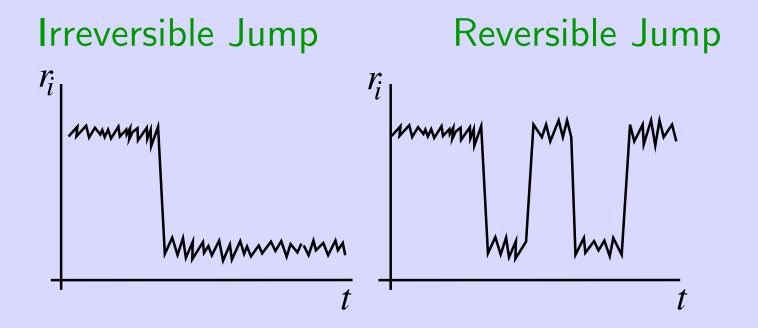
Number of Jumping Particles



- \Longrightarrow increasing with increasing T
- ⇒ both A & B particles jump
- \Longrightarrow irrev. & reversible jumps at all temperatures T

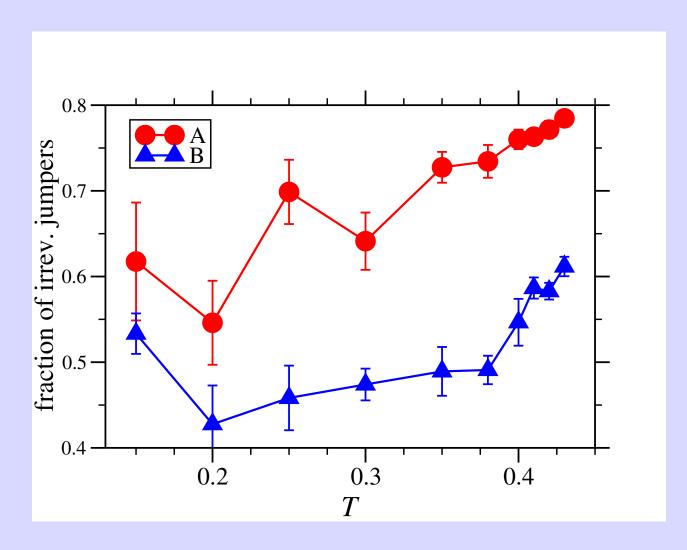
Fraction of Irreversibly Jumping Particles

 $fraction of irrev. jumpers = \frac{number of irrev. jump. part.}{number of jump. part.}$



Fraction of Irreversibly Jumping Particles

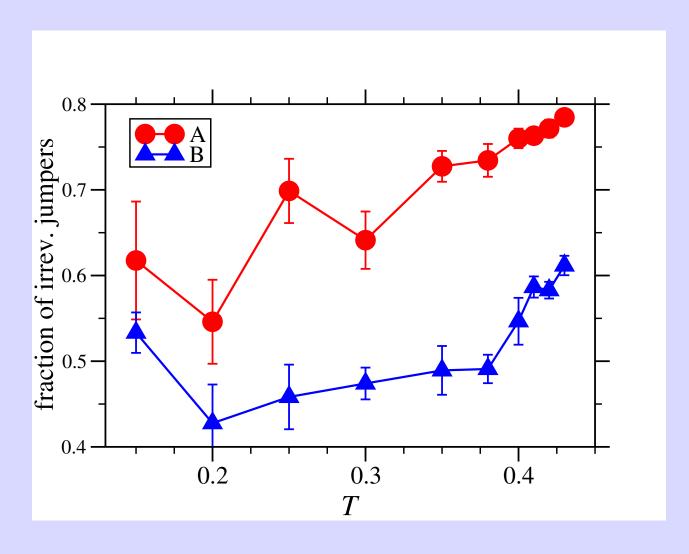
fraction of irrev. jumpers $=\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$



 \Longrightarrow fraction of irrev. jumpers increases with increasing T

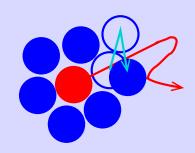
Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers $=\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$

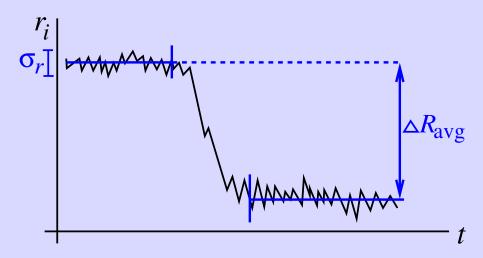


 \Longrightarrow fraction of irrev. jumpers increases with increasing T

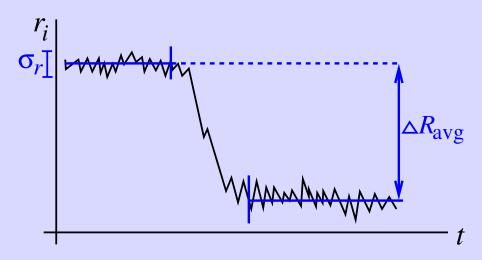
interpretation: door closing

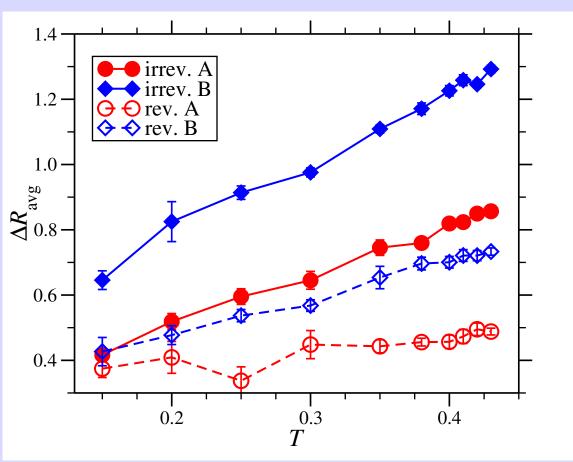


Jump Size



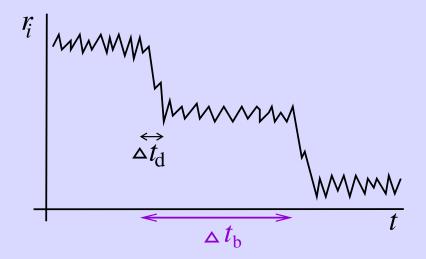
Jump Size



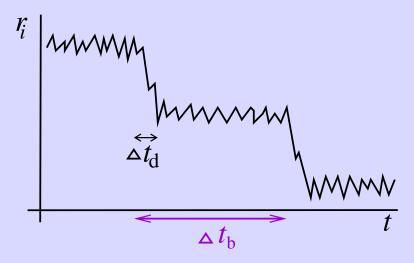


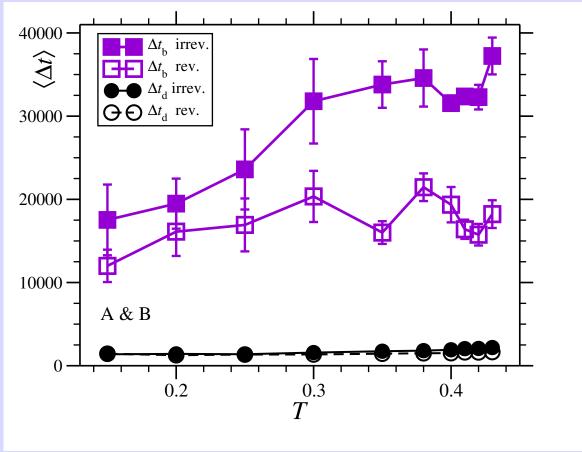
- \Longrightarrow increasing with increasing T
- (smaller) B-particles jump farther
- irreversible jumps
 farther

Time Scale



Time Scale





$$\Longrightarrow \Delta t_{\rm b} \gg \Delta t_{\rm d}$$

$$\Longrightarrow \Delta t_{\mathrm{b}}$$
 independent of temperature

(whole simulation 10^5)

Summary: Jump Statistics

At larger temperature relaxation:

- not via $\Delta t_{\rm b}$ (indep. of T)
- via larger jumpsizes
- via more jumping particles

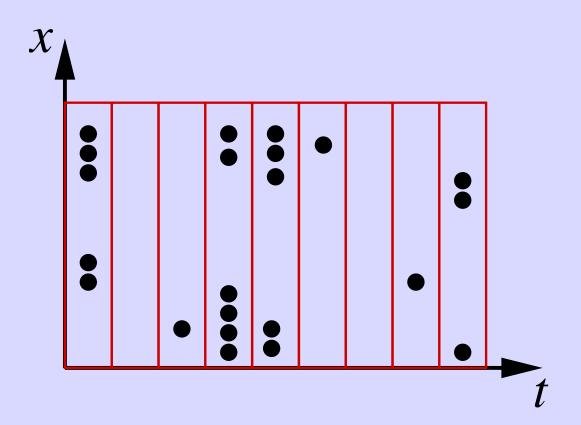
[J. Chem. Phys. 121, 4781 (2004)]

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - Temporally Extended Cluster
- History Dependence
- Summary & Outlook

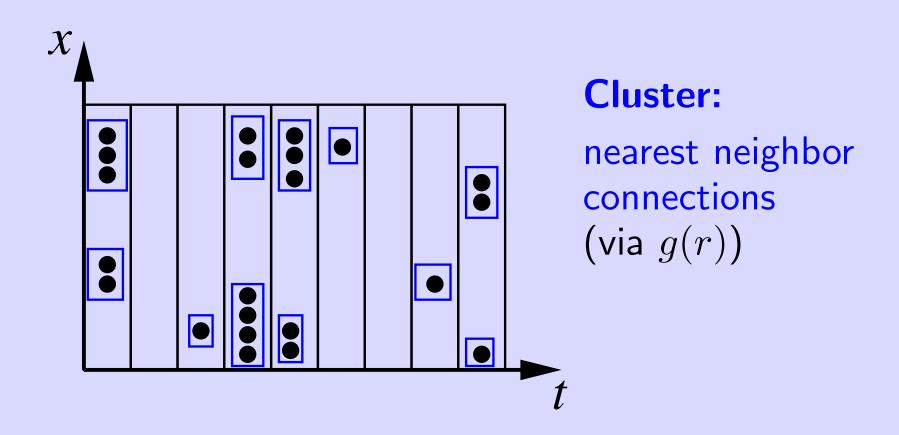
Simultaneously Jumping Particles

Definition: Correlated in Time & Space



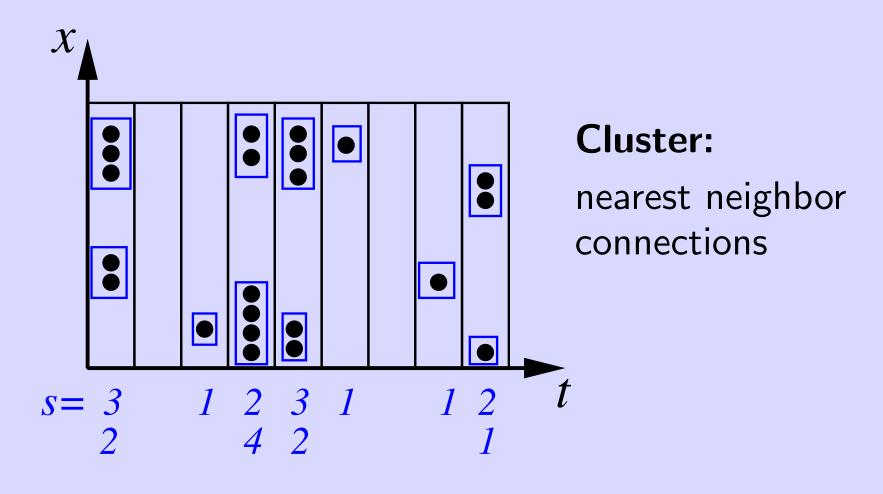
Simultaneously Jumping Particles

Definition: Correlated in Time & Space

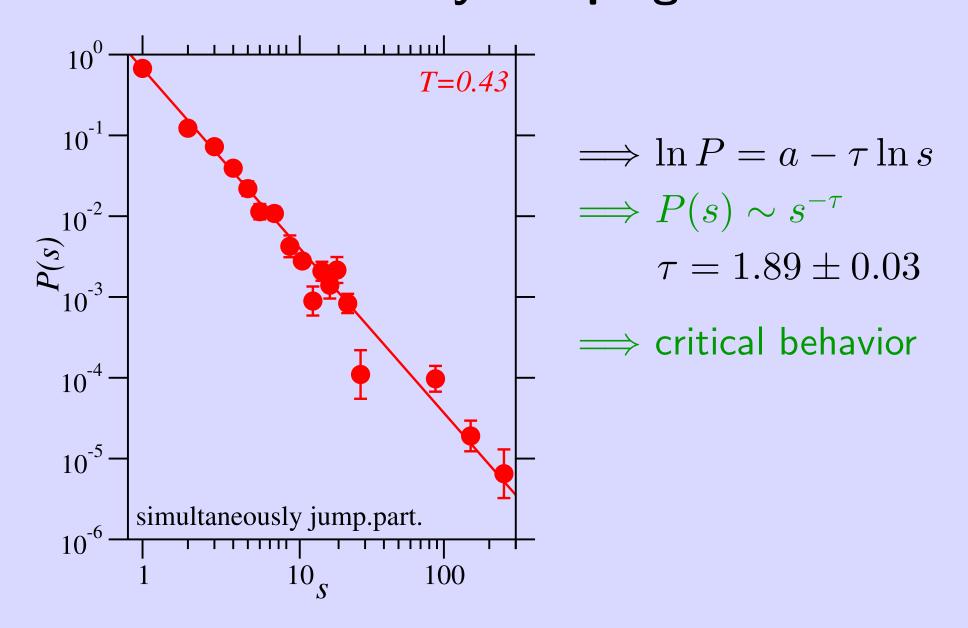


Simultaneously Jumping Particles

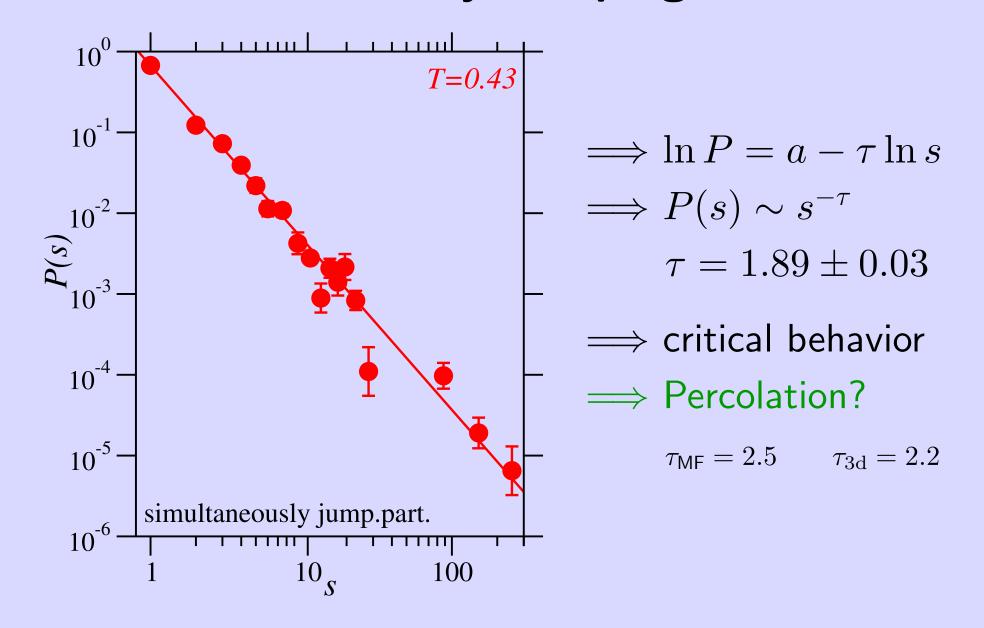
Cluster Size = number of particles in cluster



Cluster Size Distribution of Simultaneously Jumping Particles

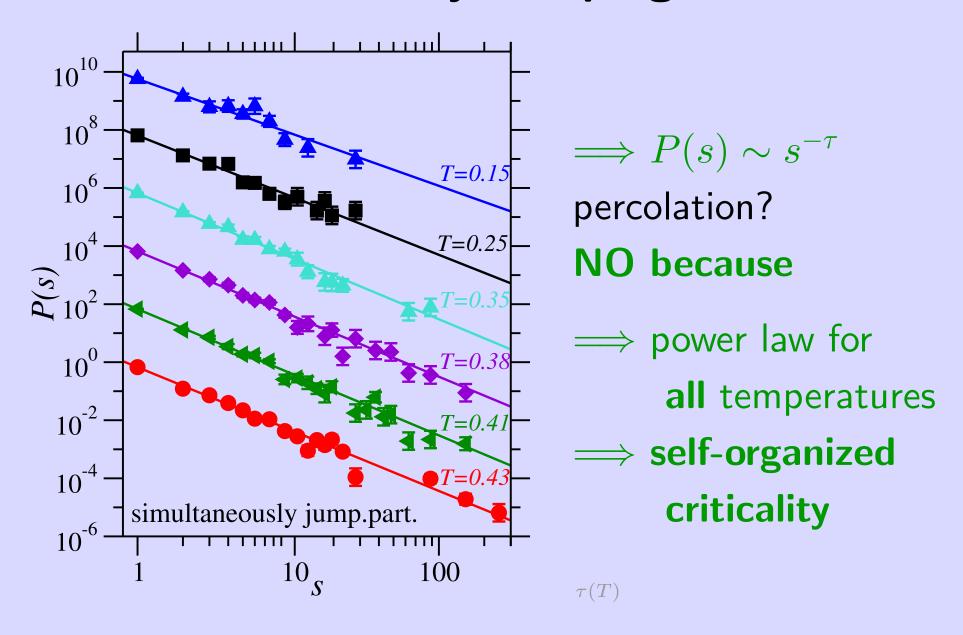


Cluster Size Distribution of Simultaneously Jumping Particles



Cluster Size Distribution

of Simultaneously Jumping Particles



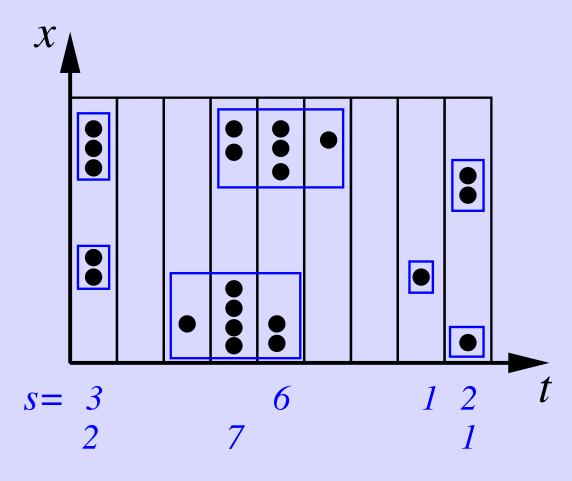
Self-Organized Criticality: Similarities

- power law (critical behavior) not only at $T_{\rm c}$ but for all $T < T_{\rm c}$
- out of equilibrium
- wide range of time scales
- avalanches

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - ⋄ Temporally Extended Cluster
- History Dependence
- Summary & Outlook

Temporally Extended Cluster



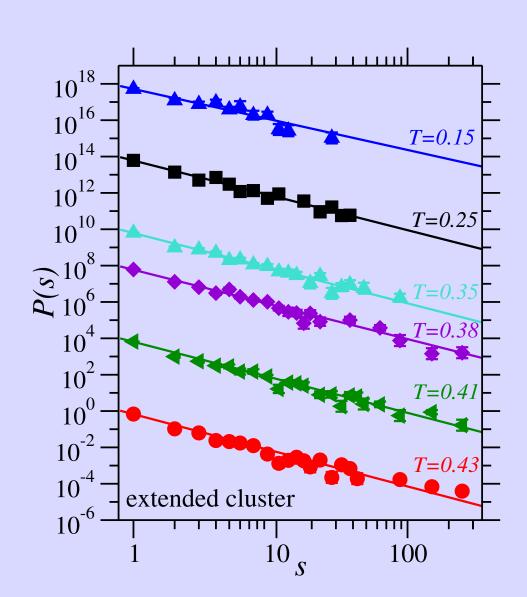
Definition:

cluster of events (\mathbf{r}_i, t_i) connected if:

$$\Delta r < r_{
m cutoff}$$
 and $\Delta t < t_{
m cutoff}$

quantifies avalanche

Cluster Size Distribution of Temporally Extended Clusters

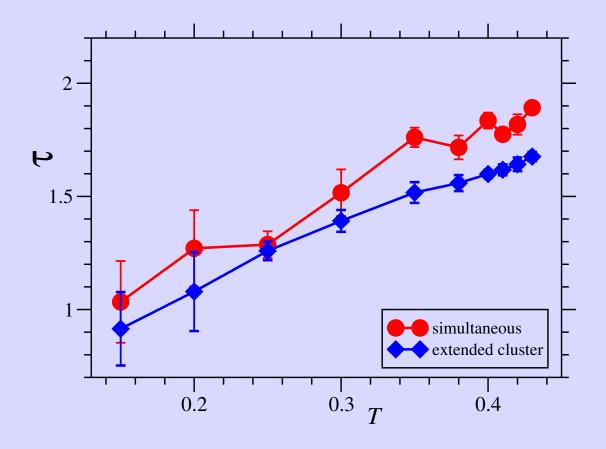


$$\implies P(s) \sim s^{-\tau}$$

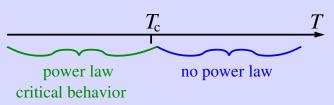
for all temperatures
 (self-organized crit.)

Exponent $\tau(T)$

$$P(s) \sim s^{-\tau}$$



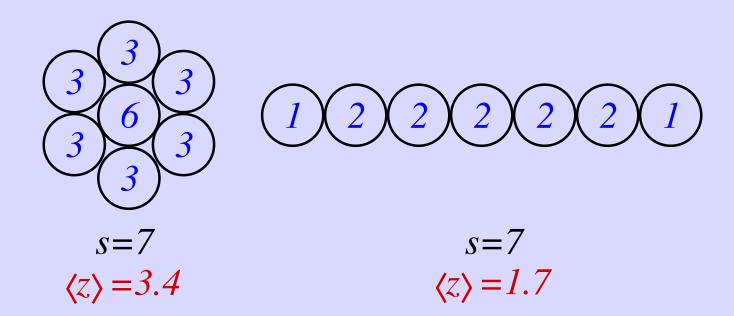
slightly above $T_{\rm c}$ $au \approx 1.86$ [Donati et al. 1999]



P simult.

Shape of Clusters

```
z = number of nearest neighbors within cluster s = number of particles (cluster size)
```

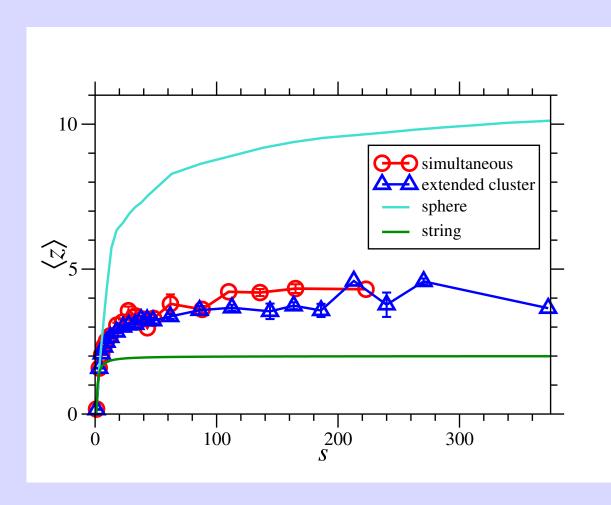



Shape of Clusters

```
z = number of nearest neighbors within cluster
```

```
s = \text{number of particles (cluster size)}
```

 $\langle z \rangle$ = average of z over particles $1, \dots s$



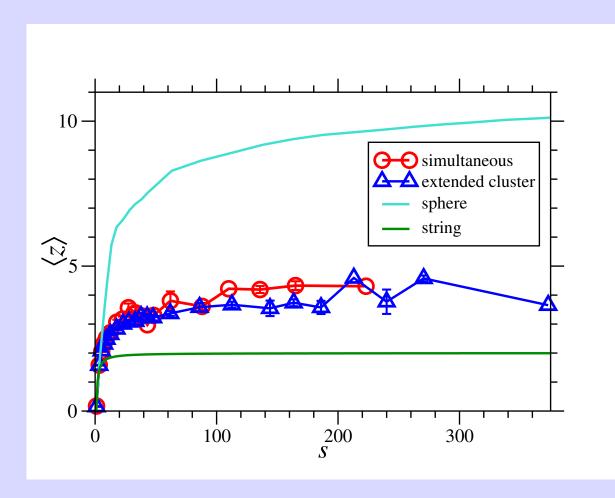
⇒ string-like clusters

Shape of Clusters

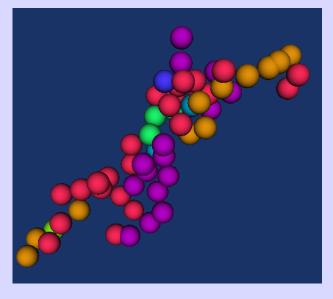
z = number of nearest neighbors within cluster

s = number of particles (cluster size)

 $\langle z \rangle$ = average of z over particles $1, \dots s$



⇒ string-like clusters

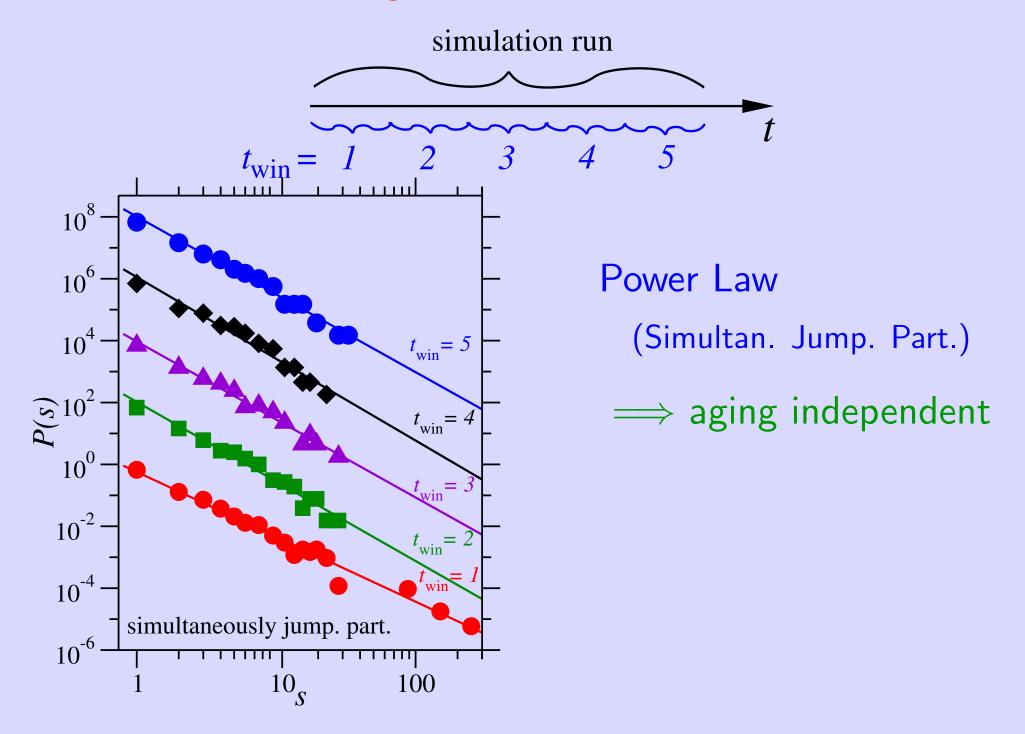


same color = same time

Outline

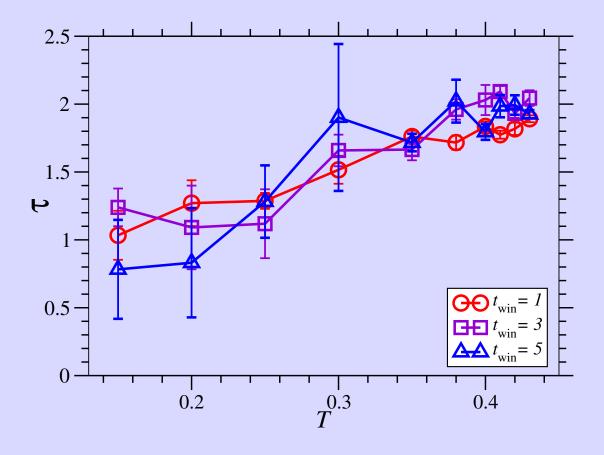
- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - Temporally Extended Cluster
- History Dependence
- Summary & Outlook

History Dependence



Exponent $\tau(T)$

$$P(s) \sim s^{-\tau}$$



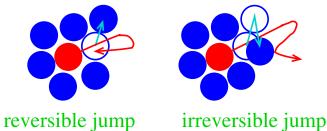
⇒ aging independent

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - ⋄ Temporally Extended Cluster
- History Dependence
- Summary & Outlook

Summary: Jump Statistics

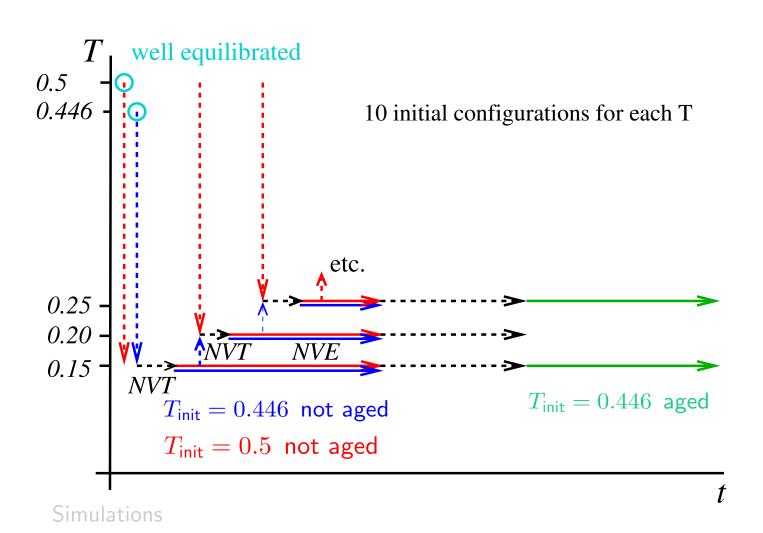
reversible and irreversible jumps:



At larger temperature relaxation:

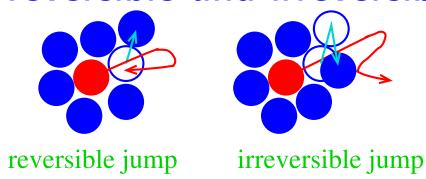
- via more jumping particles
- via larger jumpsizes
- not via $\Delta t_{\rm b}$ (indep. of T)

History of Production Runs



Summary: Jump Statistics

reversible and irreversible jumps:



At larger temperature relaxation:

via more jumping particles history dependent

via larger jumpsizes history independent

• not via $\Delta t_{\rm b}$ (indep. of T) history independent

Summary: Correlated Single Particle Jumps simultaneously jump. part. & extended clusters

- jumps are correlated spatially and temporally
- string-like clusters
- Distribution of Cluster Size: $P(s) \sim s^{-\tau}$
 - aging independent
 - \diamond for all temp. \longrightarrow self-organized criticality (critical behavior gets frozen in)

[Europhys. Lett. **76**, 1130 (2006)]

critical behavior

Future/Present

SiO₂:

- aging to equilibrium [to be submitted to PRE]
 (J. A. Roman & J. Horbach)
- local incoherent intermediate scattering function (A. Parsaeian & H. E. Castillo)
- jumps
 (R. A. Bjorkquist, L. M. Chambers)

granular media: (T. Aspelmeier & A. Zippelius)

Acknowledgments

A. Zippelius, K. Binder, E. A. Baker, J. Horbach

Inst. of Theor. Physics, Univ. Göttingen, SFB 262 and DFG Grant No. Zi 209/6-1

SiO₂: Aging to Equilibrium

 $C_q(t_{\mathrm{w}},t_{\mathrm{w}}+t)$ and $\Delta r^2(t_{\mathrm{w}},t_{\mathrm{w}}+t)$:

Three $t_{\rm w}$ Ranges:

• $t_{\rm w}$ small:

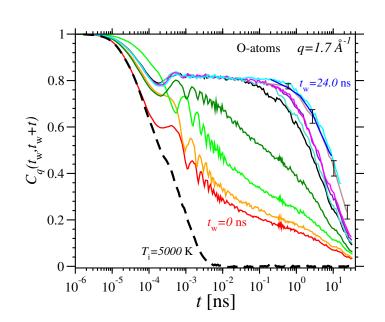
- \diamond $t_{\rm W}=0$ and t small: $T_{\rm i}$ good approx.
- \diamond dependent on $t_{\rm w}$, $T_{\rm i}$, $T_{\rm f}$

• t_w intermediate:

- \diamond plateau indep. of $t_{\sf w}$ and T_i
- \diamond C_q time superposition (not Δr^2)
- $\diamond \ C_q^{\mathsf{AG}} = C(q, z(t_{\mathsf{w}}, t))$

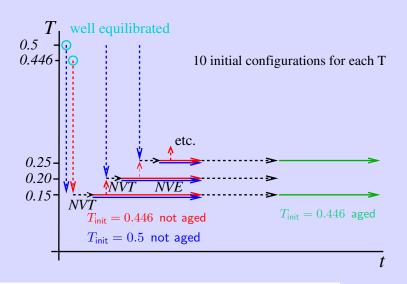
• $t_{\rm w}$ large:

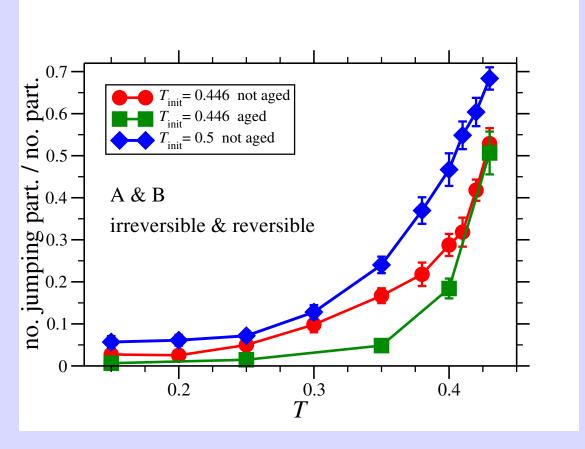
- \diamond indep. of $t_{\sf w}$ and $T_i \longrightarrow {\sf equilibrium}$
- \diamond for C_q equilibrium included in superposition



Time Scales

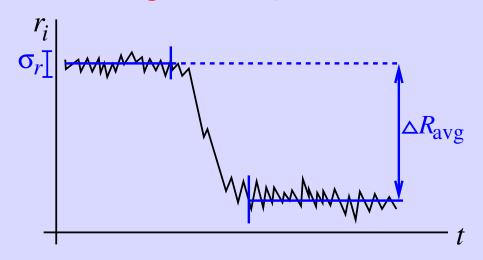
- one MD step: 0.02 time units, Ar: $3 \cdot 10^{-13} \text{s} \cdot 0.02 = 6 \text{fs}$
- one oscillation: 100 MD steps, 0.6 ps
- time a jump takes: 200 MD steps, 1.2 ps
- time resolution (time bin): 40000 MD steps, 240 ps
- time betw. successive jumps $\Delta t_{\rm b}$: $1.5 \cdot 10^6$ MD steps, 9 ns
- \bullet whole simulation run: $5 \cdot 10^6$ MD steps, 30 ns

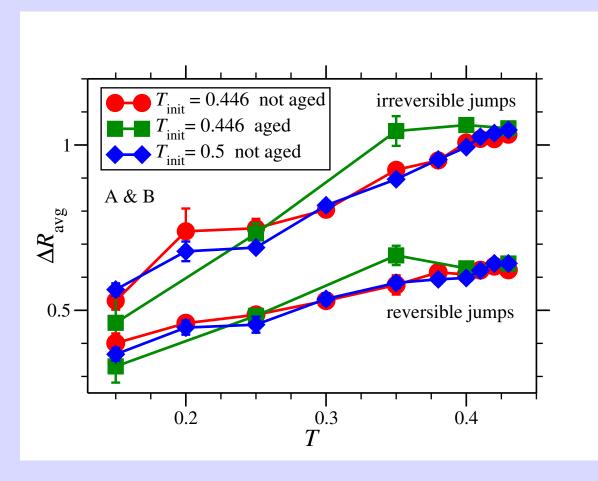




Number of Jump. Part.

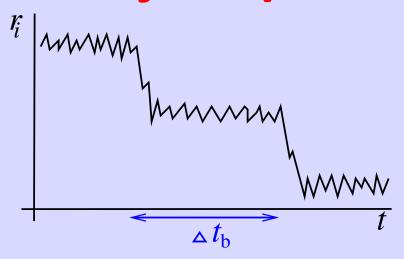
⇒ history dependent

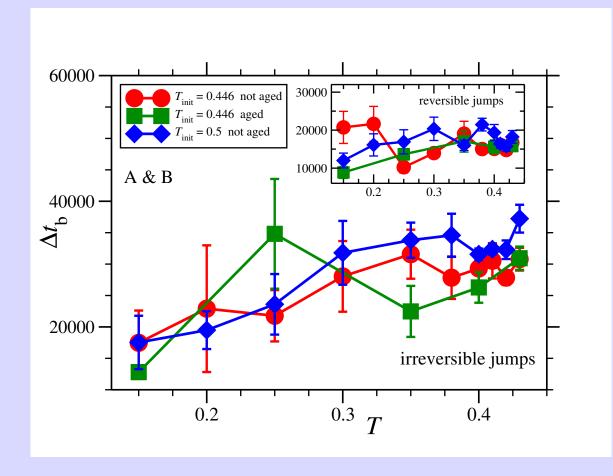




Jump Size

⇒ history independent



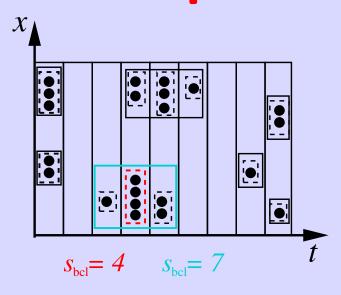


Time Between Jumps

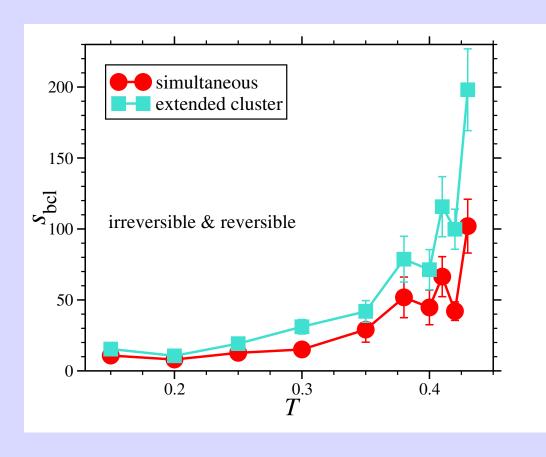
⇒ history independent

Summary: Jump Statistics

Most Cooperative Processes

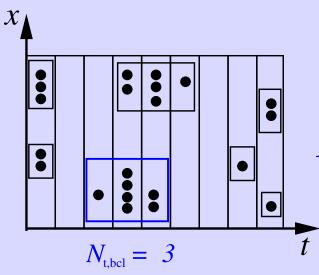


 $s_{\rm bcl} =$ largest cluster size

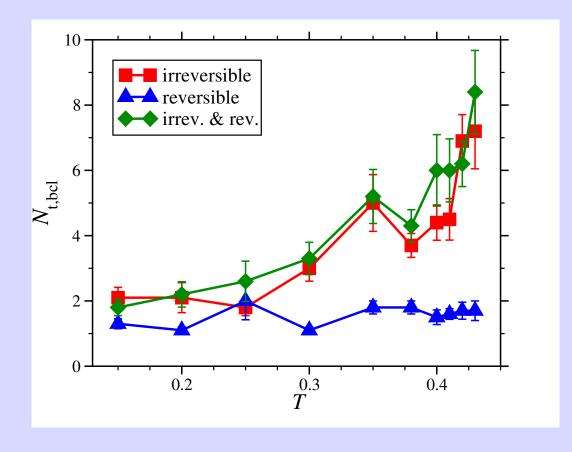


- highly correlated single particle jumps
- many particles

Most Cooperative Processes

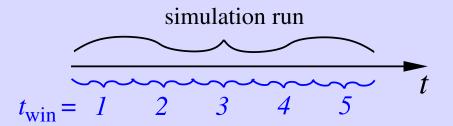


 $N_{\rm t,bcl}=$ no. of time bins of largest cluster

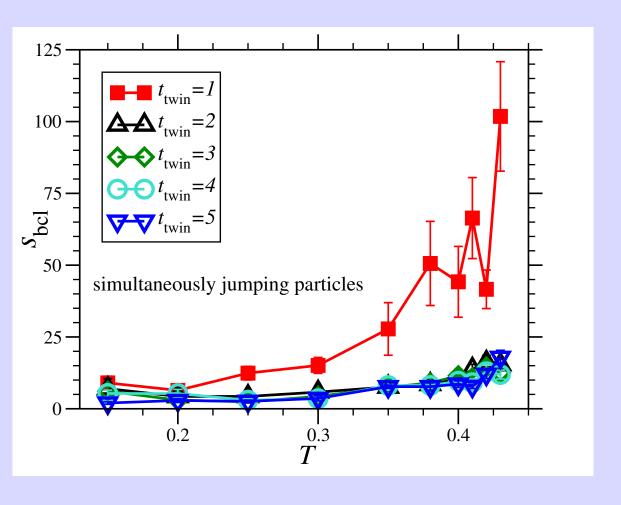


- highly correlated single particle jumps
- many particles
- many time bins (maximum = 125)

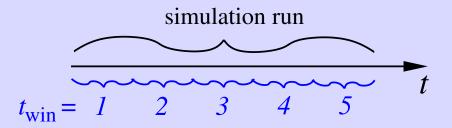
Time Scales Extra



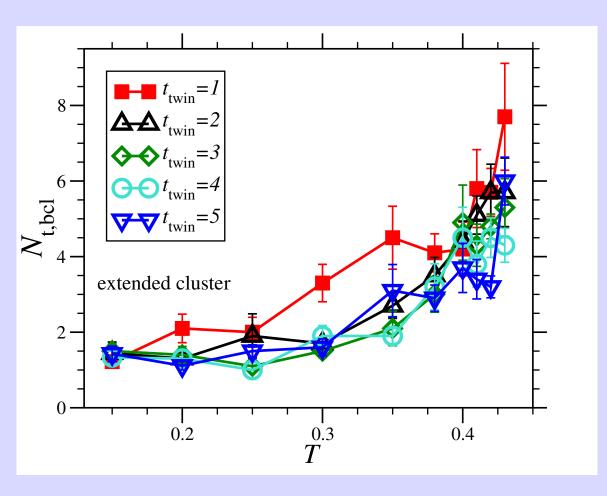
 $s_{bcl} = largest cluster size$



- ⇒ aging dependent
- 1st t-window:highly cooperative
- 2nd 5th t-window:
 same, cooperative

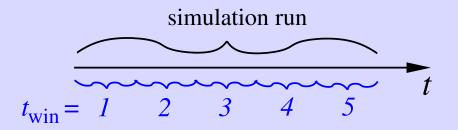


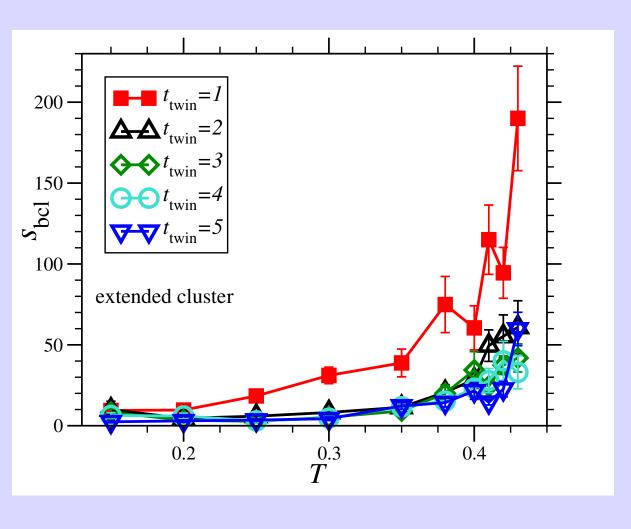
 $N_{\rm t,bcl}={\rm no.~of~t\text{-}bins~of~largest~cluster}$



⇒ less aging dependent

⇒ highly cooperative



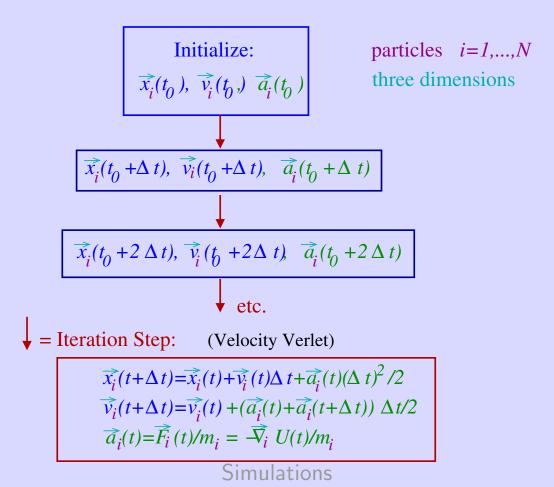


⇒ aging dependent

- 1st t-window: highly cooperative
- 2nd 5th t-window:
 same, cooperative

 s_bcl simult. jump

Molecular Dynamics Simulation



Critical Behavior:

Critical Point at Phase Transition:

power law at specific fine tuned external parameter

e.g. percolation: $P(s)=s^{-\tau}$ at $p=p_c$ at all other p no power law

e.g. jumping particle clusters: $P(s)=s^{-\tau}$ (would be) at $T=T_c$ only

Self-Organized Criticality:

power law for whole range of external parameter here jumping particle clusters: $P(s)=s^{-\tau}$ for all T=0.15-0.43

Other Examples:

- sandpile avalanches
- forest fire
- financial market
- earth quakes

[P. Bak, C. Tang, and K. Wiesenfeld, PRL 59, 381 (1987)]