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Abstract. – We obtain evidence that the dynamics of glassy systems below the glass transition
is characterized by self-organized criticality. Using molecular-dynamics simulations of a model
glass-former we identify clusters of cooperatively jumping particles. We find string-like clusters
whose size is power-law-distributed not only close to Tc but for all temperatures below Tc,
indicating self-organized criticality which we interpret as a freezing in of critical behavior.

Introduction. – Although the relaxation dynamics of glass-forming liquids has been stud-
ied for decades, there are still many unresolved questions [1]. Especially for the dynamics of
the glass out of equilibrium it is still an open and hotly debated question what characterizes
the relaxation. We present in this letter work on the dynamics below the glass transition where
we focus on cooperative motion. Cooperative rearranging regions have been studied mostly
above the glass transition and are the basis of Adam-Gibbs theory [2]. Above the glass tran-
sition two kinds of cooperative motion have been identified: i) string-like motion [3–7] where
of the order of ten particles move along a Conga-line and where each particle is significantly
more mobile than an average particle, and ii) very cooperative motion where of the order of
40 particles participate and where each particle undergoes only a small displacement [8].
To study cooperative motion below the glass transition we use molecular-dynamics simu-

lations, which have the advantage of providing us with the microscopic information of every
particle’s position at all times. Using these particles trajectories we first search each simula-
tion run for jump events where a particle jumps out of its cage of neighbors. Then we identify
clusters of cooperatively jumping particles, i.e. jump events which are correlated in space and
time. We find that the cluster size distribution follows a power law independent of details of
the cluster definition. Furthermore, we find string-like clusters as they have been found above
the glass transition.
A similar cluster definition for the system under study [4] and also for other systems

such as SiO2 and polymer melts [9–11] have also revealed a power law distribution but at a
temperature slightly above the glass transition. Such distributions are a signature of criticality,
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such as the cluster size distribution in percolation theory at the critical point [12]. However,
contrary to these simulations and percolation theory, we find a power law not only close to
a critical point but for all temperatures below Tc that we have investigated. We thus find a
type of self-organized criticality.
Our data are consistent with the following scenario: a glass cooled down to Tc develops crit-

ical behavior, and then upon further cooling the criticality remains frozen in. Mode-coupling
theory for glasses predicts the development of critical fluctuations [13] when Tc is approached
from above and a recent extension of mode-coupling theory to temperatures below the tran-
sition has predicted such a freezing-in of critical behavior [14]. The signature of criticality in
these theories is the power law of a two-time correlation function [14–16]. Our data, while
consistent with the mode-coupling freezing-in scenario, find criticality in a spatial structure
rather than a relaxation exponent. We believe this represents the first direct observation in
glasses of self-organized criticality, that is, criticality for all temperatures below Tc.

Model. – Our system is a well-studied binary Lennard-Jones (LJ) mixture of 800 A and
200 B particles. We refer the reader for details of the model to [17] and for details of the
molecular dynamics simulations to [18]. Previous simulations have shown that this system
exhibits the main features of glass-forming liquids and is thus a good simple model for glass-
formers [17]. The mode-coupling critical temperature is Tc = 0.435 (in reduced LJ units) [17].
Whereas Donati et al. [3, 4] studied cooperative motion of this system above the glass transi-
tion, we study here the same system but below the glass transition at 10 temperatures ranging
from 0.15 to 0.43. We use 10 independent, well-equilibrated configurations at T = 0.5 and
then instantly quench the system to the desired temperature, e.g. T = 0.15. After an (NVT)
run of 2000 time units we then run the (NVE) production run for 2 · 104 time units.

Jump definition. – For the definition of jump events we use the trajectory rn(t) of each
particle n and take time averages over 800 time units to obtain its thermal fluctuation σn

and average positions rn(tl) at times tl = 800(l − 0.5) where l = 1, 2, . . . , 25. We define
a particle n to undergo a jump if its change in average position ∆rn = |rn(tl)− rn(tl−4)|
satisfies ∆rn >

√
20σn [19]. We thus identify for the whole simulation run all jump events

{n, li, 〈rn〉i, lf , 〈rn〉f} of jumping particles n, jumping from average position 〈rn〉i at time tli ,
the time associated with bin li, to average position 〈rn〉f at time tlf [20].

Cooperative motion. – To address the question of cooperative motion we investigate how
these single particle jump events are correlated in time and space. To identify correlations
in time, we group the jump events according to the bin index li. We thus obtain Nl simul-
taneously jumping particles for each time bin l. To investigate how these Nl particles are
spatially correlated, we identify clusters where particles n and m are defined to be neighbors
(and therefore members of the same cluster) if their distance |〈rn〉i − 〈rm〉i| is smaller than
the position of the first minimum rmin of the corresponding radial pair distribution function
of the complete system (rmin = 1.4 for AA, 1.2 for AB and 1.07 for BB independent of tem-
perature) [21]. This analysis gives us for each time Kl ≥ 0 distinct clusters. The clusters are
numbered by k = 1, 2, . . . ,Kl and we denote by Nl,k the set of particle labels composing the

k-th cluster in time bin l with Nl,k particles (i.e.
Kl∑

k=1

Nl,k = Nl). We now look at the size

distribution P (s) of all clusters Nl,k, with s being the number of cluster members, i.e.

P (s) =
∑

l

Kl∑
k=1

δ(s,Nl,k)
/ ∑

l

Kl, (1)

where δ(x, y) is the Kronecker delta function.
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Fig. 1 – Distribution P (s) of cluster sizes of simultaneously jumping particles for temperatures T =
0.15–0.43. For clarity, the distributions have been shifted by successive factors of 100. Linear fits to
logP (logs) are included. The waiting time defined in the text, is twait = 0.2 · 104.

In fig. 1 we show a log-log plot of P (s) for temperatures T = 0.15–0.43. For clarity
only a subset of all temperatures is shown and the curves have been shifted by a factor of
100n (n = 0, 1, 2, . . .). Error bars have been determined via the ten independent simulation
runs. Weighted linear fits to logP (logs) are included. We observe essentially a straight line,
i.e. a power law P (s) ∼ s−τ , indicating scale invariance. In fig. 2 we show the exponents τ as
a function of temperature. (Corresponding to fig. 1 are the circles and the bold straight line
which serves as guide to the eye.) Error bars have been obtained via the slopes of the 10 inde-
pendent weighted linear fits to logP (logs). We find that τ is increasing with increasing temper-
ature, and approaching approximately the value τ ≈ 1.86, which has been found for the same
binary Lennard-Jones system slightly above but close to Tc [4]. In percolation theory the size
distribution ns (where P (s) = ns/

∑
s ns) follows also a power law where the mean-field expo-

nent τ = 2.5 and in three dimensions τ = 2.2 [12]. However, in these simulations and in perco-
lation theory the power law occurs only at Tc. In contrast, we find a power law for all temper-
atures (see fig. 1, and similarly for not included temperatures), i.e. we find scaling invariance
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Fig. 2 – Exponent τ as a function of temperature T for simultaneously jumping particles and for
varying waiting time twait. The inset shows τ for twait = 0.2 ·104 for different cluster definitions given
in the text.
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for the whole temperature range below Tc [22]. As mentioned above, this is consistent with
the scenario of critical behavior being frozen in, and remaining for all temperatures below Tc.
This scale invariance independent of a control parameter is usually found in systems with

self-organized criticality [23] and is, to our knowledge, a new phenomenon for the cluster size
distribution of structural glass formers. The occurrence of self-organized criticality is usually
associated with being out of equilibrium and having widely separated time scales. Our system
is consistent with these requirements: single particle jumps take of the order of 10 time units,
the time between successive jumps is of the order of 30000 [18], and the equilibrium relaxation
time is significantly longer than the simulation run [17].
Due to the importance of implications for relaxation dynamics below the glass transition,

the question arises if our results for the cluster size distribution are specific to details of
the analysis. To check the sensitivity on details of the power law of P (s) we next modify
the definition of a cluster. Whereas usually cluster connections are defined in space (and
therefore avalanche-like correlations are tested in space), we generalize now the definition of a
cluster by treating space and time similarly (and thus allowing for avalanche-like correlations
in time too). Instead of requiring as before that two jump events α and β occur simultaneously
(lαi = lβi ), we define extended clusters by allowing two jump events to occur at neighboring
time bins (i.e. |∆l| ≤ 1). We show in fig. 3 results for two different definitions of extended
clusters (I and II). The difference between these definitions is due to the usage of time and
position before or after the jump. We define two jump events {nα, lαi , 〈rn〉αi , lαf , 〈rn〉αf } and
{mβ , lβi , 〈rm〉βi , lβf , 〈rm〉βf } to be connected if
– def. I: |lαi − lβi | ≤ 1 and |〈rn〉αi − 〈rm〉βi | ≤ rmin

– def. II:
(|lαi − lβf | ≤ 1 and |〈rn〉αi − 〈rm〉βf | ≤ rmin

)
or(|lαf − lβi | ≤ 1 and |〈rn〉αf − 〈rm〉βi | ≤ rmin

)
.

As before for simultaneously jumping particles, definitions I and II result in a cluster size
distribution which follows a power law. As shown in fig. 3 for T = 0.30 and 0.42 we find
again a power law for all temperatures (similar results are obtained for other temperatures).
This power law is different than previous results slightly above the glass transition [3,5,9,11]
which find an exponential string length distribution, where a string is defined similar to our
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Fig. 3 – Distribution of cluster size for extended clusters I and II for temperatures T = 0.30 and 0.42.
The waiting time defined in the text, is twait = 0.2 · 104.
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Fig. 4 – Average coordination number z within a cluster as a function of cluster size s.

definition II [24]. The exponents τ for the extended cluster definitions I and II are of the same
order and show the same temperature dependence as for simultaneously jumping particles
(see inset of fig. 2).
To further investigate these clusters we next characterize their geometric shape directly

via coordination numbers (instead of angular correlations as in [3]). We determine for each
cluster Nl,k the average coordination number

zl,k =
1

Nl,k

∑
n∈Nl,k

zn, (2)

where zn is the number of neighboring particles m ∈ Nl,k of particle n [21]. Figure 4 shows
the average

〈z(s)〉 =
∑

l

Kl∑
k=1

δ(s,Nl,k)zl,k

/∑
l

Kl∑
k=1

δ(s,Nl,k) (3)

as a function of s. We observe no temperature dependence of 〈z(s)〉 and therefore an addi-
tional average over simulation runs at different temperatures has been included in fig. 4. The
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Fig. 5 – Distribution of cluster size for simultaneously jumping particles at T = 0.43 and varying
waiting time twait.



K. Vollmayr-Lee et al.: Self-organized criticality etc. 1135

comparison with an ideal string and the most compact cluster (sphere) indicates that both the
clusters of simultaneously jumping particles as well as the extended clusters are string-like.
This is similar to the results of cooperative motion above the glass transition [3–7] and below
the glass transition [25].
Since the system is out of equilibrium, we next ask the question if the above results change

if we increase the waiting time twait after the temperature quench [26]. We therefore run the
(NVE) production run for 105 instead of 2 · 104 time units and analyze five time windows of
equal size by adjusting the sum over l in eqs. (1) and (3) accordingly. Counting the initial
(NVT) production run, we thus study waiting times twait = 0.2 · 104, 2.2 · 104, . . . , 8.2 · 104.
Figure 5 shows the resulting P (s) for simultaneously jumping particles at T = 0.43 [27]. We
find that in the first time window the most collective processes occur: up to approximately 250
particles jump simultaneously and spatially correlated. The distribution P (s) however seems
to follow a power law not only for all temperatures below Tc but also for all waiting times. As
shown in fig. 2 the exponents seem to be independent of the waiting time, indicating possibly
twait-independent distributions P (s). We obtain similar results for simultaneously jumping
particles at other temperatures and also for the extended cluster definitions I and II. Also the
average coordination number 〈z(s)〉 seems independent of twait.

Conclusions. – Our results are consistent with the following scenario: above the critical
temperature Tc string-like clusters are found. Close to Tc the distribution of cluster sizes fol-
lows a power law. Below the glass transition this critical behavior gets frozen in. Independent
of details of the cluster definition and independent of waiting time, we find string-like clusters
with a cluster size distribution which follows a power law for all investigated temperatures. In
the simulation the finite number of particles sets an upper limit on the cluster size s and thus
on the range over which this power law is observed. We therefore plan further investigations
with a system of significantly more particles. The experiments of Weeks et al. [6] result in a
power law of P (s) for one φ > φc (which corresponds to T < Tc). The power law for a glass
out of equilibrium seems to be robust, since Weeks et al. used definitions of mobile particles
(jumping particles) and clusters that differ from the definitions presented in this paper. We
therefore expect this self-organized criticality to occur also for other glasses out of equilibrium
and therefore suggest further investigations of P (s) for glasses out of equilibrium.

∗ ∗ ∗

KVL thanks the Institute of Theoretical Physics, University Göttingen, for hospitality and
financial support. EAB gratefully acknowledges support from NSF Grant No. REU-0097424.
The authors thank J. Horbach, W. Kob and K. Binder for comments on an earlier version
of this manuscript and also A. Latz, and A. Zippelius for helpful discussions.

REFERENCES

[1] Binder K. and Kob W., Glassy Materials and Disordered Solids: An Introduction to Their
Statistical Mechanics (World Scientific, Singapore) 2005.

[2] Adam G. and Gibbs J. H., J. Chem. Phys., 43 (1965) 139.
[3] Donati C., Douglas J. F., Kob W., Plimpton S. J., Poole P. H. and Glotzer S. C.,

Phys. Rev. Lett., 80 (1998) 2338.
[4] Donati C., Glotzer S. C., Poole P. H., Kob W. and Plimpton S. J., Phys. Rev. E, 60

(1999) 3107.
[5] Aichele M., Gebremichael Y., Starr F. W. and Glotzer S. C., J. Chem. Phys., 119

(2003) 5290; 120 (2004) 6798.



1136 EUROPHYSICS LETTERS

[6] Weeks E. R., Crocker J. C., Levitt A. C., Schofield A. and Weitz D. A., Science, 287
(2000) 627.

[7] Miyagawa H., Hiwatari Y., Bernu B. and Hansen J., J. Chem. Phys., 88 (1988) 3879;
Wahnström G., Phys. Rev. A, 44 (1991) 3752; Perera D. N. and Harrowell P., J. Chem.
Phys., 111 (1999) 5441; Teboul V., Monteil A., Ai L. C., Kerrache A. and Maabou S.,
Eur. Phys. J. B, 40 (2004) 49; Vogel M. and Glotzer S. C., Phys. Rev. Lett., 92 (2004)
255901; Bergroth M. N. J., Vogel M. and Glotzer S. C., J. Phys. Chem. B, 109 (2005)
6748; Fullerton S. K. and Maranas J. K., J. Chem. Phys., 121 (2004) 8562; Giovambat-

tista N., Buldyrev S. V., Stanley H. E. and Starr F. W., Phys. Rev. E, 72 (2005) 011202.
[8] Appignanesi G. A., Fris J. A. R., Montani R. A. and Kob W., Phys. Rev. Lett., 96 (2006)

057801.
[9] Vogel M. and Glotzer S. C., Phys. Rev. E, 70 (2004) 061504.

[10] Gebremichael Y., Schrøder T. B., Starr F. W. and Glotzer S. C., Phys. Rev. E, 64
(2001) 051503.

[11] Gebremichael Y., Vogel M. and Glotzer S. C., J. Chem. Phys., 120 (2004) 4415.
[12] Stauffer D., Phys. Rep., 54 (1979) 1.
[13] Götze W. and Sjögren L., Rep. Prog. Phys., 55 (1992) 241; Götze W., J. Phys.: Condens.

Matter, 11 (1999) A1.
[14] Latz A., preprint cond-mat/0106086.
[15] Latz A., J. Phys.: Condens. Matter, 12 (2000) 6353.
[16] Bouchaud J.-P., Cugliandolo L., Kurchan J. and Mézard M., Physica A, 226 (1996) 243.
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