Temperature-Dependent Defect Dynamics in SiO₂

Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen

Göttingen, June 12, 2013

Introduction: Glass

[C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53 (1976)]

Dynamics:

Viscocity η as function of inverse temperature T

- ► slowing down of many decades → very interesting dynamics
- strong and fragile glass formers Here: SiO₂ (strong glass former)

Model & Simulations

Model: BKS Potential

[B.W.H. van Beest et al., PRL 64, 1955 (1990)]

$$\phi(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} e^{-B_{ij} r_{ij}} - \frac{C_{ij}}{r_{ij}^6}$$

112 Si & 224 O $\rho = 2.32 \text{ g/cm}^3$ $T_c = 3330 \text{ K}$

Motivation

Unexpected Similar Dynamics:

- scaling plots (C_q , χ_4 , $P(C_q)$)
- jump statistics ($P(\Delta R)$, $P(\Delta t_{\rm b})$)

 \longrightarrow SiO₂-specific perspective?

Network Glass SiO₂

 \longrightarrow extract main features

Time Averaged Trajectories

 \longrightarrow strong temperature dependence

Structure: Radial Distribution Function

$$g_{\alpha\beta}(r) = \left\langle \frac{V}{N_{\alpha}N_{\beta}} \sum_{i=1}^{N_{\alpha}} \sum_{\substack{j=1\\j\neq i}}^{N_{\beta}} \delta(|\mathbf{r}| - |\overline{\mathbf{r}}_{ij}(t)| \right\rangle$$

$$\alpha, \beta \in {Si,O}$$

time average sharpens peaks

Structure: Radial Distribution Function

$$g_{\alpha\beta}(r) = \left\langle \frac{V}{N_{\alpha}N_{\beta}} \sum_{i=1}^{N_{\alpha}} \sum_{\substack{j=1\\j\neq i}}^{N_{\beta}} \delta(|\mathbf{r}| - |\overline{\mathbf{r}}_{ij}(t)| \right\rangle$$

$$\alpha, \beta \in {Si,O}$$

 almost no temperature dependence

Structure: Coordination Number

 $z_i^{\alpha\beta} =$ number of nearest neighbors via minimum of $g_{\alpha\beta}$ ($\alpha, \beta \in \{Si,O\}$)

ightarrow sharply peaked

SiO_2 -Network

- almost perfect neighborhood
- ► well defined defects: $z_i^{\alpha\beta} \neq z_{\text{perfect}}^{\alpha\beta}$
- ► focus on defects

Number of Defects

Life Time of Defects?

Defect-Defect Correlation

 \longrightarrow strong temperature dependence

Life Time of Defects

- SiO- & OSi-defects short-lived (flashes)
- OO-defects longer lived

Jumps

Number of Jumps

$$\chi_i^{\mathrm{J}}(t) = \left\{ egin{array}{cc} 1 & \mathsf{during jump} \ 0 & \mathsf{otherwise} \end{array}
ight.$$

$$M_{\alpha}^{\mathrm{J}} = \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{J}}(t) \right\rangle$$

- very few jumps
- Arrhenius fits
- strong temperature dependence

Defect-Jump Correlation

Are Defects and Jumps Correlated?

Defect-Jump Correlation

$$A_{\alpha,\beta}^{\mathrm{DJ}} = \frac{\left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \chi_{i}^{\mathrm{J}}(t) \right\rangle - \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \right\rangle \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{J}}(t) \right\rangle}{\left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \right\rangle \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{J}}(t) \right\rangle}$$

Defect-Jump Correlation

$$A_{\alpha,\beta}^{\mathrm{DJ}} = \frac{\left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \chi_{i}^{\mathrm{J}}(t) \right\rangle - \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \right\rangle \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{J}}(t) \right\rangle}{\left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \right\rangle \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{J}}(t) \right\rangle}$$
$$= \frac{\left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \chi_{i}^{\mathrm{D}}(t,\beta) \chi_{i}^{\mathrm{J}}(t) \right\rangle - M_{\alpha\beta}^{D} M_{\alpha}^{J}}{M_{\alpha\beta}^{D} M_{\alpha}^{J}}$$

- strong correlation between defects and jumps
- correlation is decreasing with increasing temperature

Summary

Simulations of SiO₂-Glass

Extract Information:

- time averaged positions
- $\chi^{\mathrm{D}}_i(t,\beta)$, $\chi^{\mathrm{J}}_i(t)$

Defects:

- well defined $(g_{\alpha\beta}(r) \& P_{\alpha\beta}(z))$
- ▶ strong temperature dependence of $\tilde{C}^{\rm DD}_{\alpha,\beta}(t)$
- $\blacktriangleright \tau^{\rm DD}_{\alpha,\beta}:$
 - SiO- & OSi-defects short lived and OO-defects long lived
 - $au^{\mathrm{DD}}_{lpha,eta}$ decreasing with increasing temperature

Jump-Defect Correlation:

- strongly correlated
- $A^{\mathrm{DJ}}_{\alpha,\beta}$ decreases with increasing temperature

Acknowledgments: Supported by DFG via SFB 602 & FOR1394.