Microscopic Picture of Aging in SiO₂: A Computer Simulation

Katharina Vollmayr-Lee, Robin Bjorkquist, Landon M. Chambers Bucknell University & Göttingen

Mainz, June 25, 2013

Acknowledgments: J. Horbach & A. Zippelius

Introduction: Glass

[C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53 (1976)]

Dynamics:

Viscocity η as function of inverse temperature T

- slowing down of many decades
 very interesting dynamics
- strong and fragile glass formers Here: SiO₂ (strong glass former) Below: comparison with fragile glass former

System: SiO₂

Properties:

- rich phase diagram (like H₂O)
- density maximum
- network former
- strong glass former

Model: BKS Potential

[B.W.H. van Beest et al., PRL 64, 1955 (1990)]

$$\phi(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} e^{-B_{ij} r_{ij}} - \frac{C_{ij}}{r_{ij}^6}$$

112 Si & 224 O $\rho = 2.32 \text{ g/cm}^3$ $T_c = 3330 \text{ K}$

Molecular Dynamics Simulations

[KVL, J. Roman, J.Horbach, PRE 81, 061203 (2010)]

[KVL, J. Roman, J.Horbach, PRE 81, 061203 (2010)]

Mean Square Displacement

Mean Square Displacement

Jump Definition

[KVL, R. Bjorkquist, L.M. Chambers, PRL 110, 017801 (2013)]

Jump Definition: Aging Dependence

Average Jump Length

- O-atoms jump farther than Si-atoms
- compare:
 d_{SiO} = 1.59 Å, d_{OO} = 2.57 Å,
 d_{SiSi} = 3.13 Å
- ΔR mostly independent of $t_{
 m w}$

Jump Length Distribution

- ▶ peak at ∆R_j = 0: reversible jumps
- \blacktriangleright peaks at $d_{\rm SiO}$ and $d_{\rm OO}$
- exponential decay
- $\blacktriangleright \ P(\Delta R)$ independent of $t_{\rm w}$

strong glass former SiO_2 :

- $\blacktriangleright \ P(\Delta R)$ independent of $t_{\rm w}$
- exponential decay
- compare fragile glassformer binary LJ (& polymer) [Warren & Rottler,EPL(2009)]

Time Averages: Jump Duration $\Delta t_{ m d}$ & Time in Cage $\Delta t_{ m b}$

Distribution of Time in Cage $P(\Delta t_{\rm b})$

Distribution of Time in Cage $P(\Delta t_{\rm b})$

Distribution of Time in Cage $P(\Delta t_{\rm b})$: $T_{\rm f}$ varied

Distribution of Time in Cage $P(\Delta t_{\rm b})$: $T_{\rm f}$ varied

10

 10^{2}

103

10⁵

10

[KVL, R. Bjorkquist, L.M. Chambers, PRL (2013)]

Number of Jumping Particles per Time

Summary: Microscopic Picture of Aging

12: Story Story Story O Story O

Aging of SiO_2 :

- Only t_w -dependence: $N_p/\Delta t_w$ (not $P(\Delta R)$ and $P(\Delta t_b)$)
- $P(\Delta t_{\rm b})$ crossover power law to exponential
 - at $t_{\rm cross} \approx t_{\rm eq}^j \approx t_{\rm eq}^C$

[KVL, R. Bjorkquist, L.M. Chambers, PRL 110, 017801 (2013)]

Compare with Fragile Glassformer:

- Surprising similar jump dynamics of strong and fragile glass formers
 - $P(\Delta R)$ and $P(\Delta t_{\rm b})$ $t_{\rm w}$ -independent
 - $P(\Delta t_{\rm b})$ crossover

PAST:

► Fragile Glass Former (Binary LJ): clusters of jumping particles → self-organized criticality

[KVL & Baker, EPL(2006)]

 granular fluid: simulation and hydrodynamic theory [KVL,T.Aspelmeier,A.Zippelius,PRE 2010]

PRESENT:

Strong & Fragile Glass Former Similar?

- ► SiO₂: scaling (*χ*₄,*P*(*C_q*)) together with H. Castillo
- SiO₂: defects & jumps together with A. Zippelius

Acknowledgments: Supported by SFB 602, NSF REU grants PHY-0552790 & REU-0997424. Thanks to J. Horbach, A. Zippelius & University Göttingen.

Binary Lennard-Jones: Clusteranalysis (Simultaneous)

Binary Lennard-Jones: Clusteranalysis (Space-Time Cluster)

Summary of Granular Fluid Work

- Damped Sound Waves
- Fluctuating Hydrodynamic Theory:
 - $D_T q^2 \approx \frac{3\Gamma_0}{2T_0}$ (full solution)
 - $S(q,\omega)$ well approximated
 - transport coefficients agree with kinetic theory

[KVL, T. Aspelmeier, A. Zippelius, PRE 83, 011301 (2011)]

Theory: Fluctuating Hydrodynamics

$$\begin{aligned} \partial_t \delta n &= -iqn_0 u \\ \partial_t u &= -\frac{iq}{\rho_0} \left(\frac{\partial p}{\partial n} \delta n + \frac{\partial p}{\partial T} \delta T \right) - \nu_1 q^2 u + \xi_1 \\ \partial_t \delta T &= -D_T q^2 \delta T - \frac{3\Gamma_0}{2T_0} \delta T - iq \frac{2p_0}{dn_0} u - \Gamma_0 \left(\frac{1}{n_0} + \frac{1}{\chi} \frac{\mathrm{d}\chi}{\mathrm{d}n} \right) \delta n + \theta \end{aligned}$$

fluctuating number density $\delta n(\vec{q},t) = n - n_0$ longitudinal flow velocity $u(\vec{q},t) = \vec{u} \cdot \frac{\vec{q}}{q}$ fluctuating temperature $\delta T = T - T_0$

[Noije et al., PRE 59, 4326 (1999)]

$$C_q(t_{\rm w}, t_{\rm w}+t) = \left\langle \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} e^{i\vec{q} \cdot (\vec{r}_j(t_{\rm w}+t) - \vec{r}_j(t_{\rm w}))} \right\rangle$$

- $t_{\rm w}$ small:
 - $t_{\rm w} = 0 \& t \lesssim 5 \cdot 10^{-5}$ ns: $T_{\rm i}$ good approx.
 - no plateau
 - \bullet decay $t_{\rm w}\text{-dependent}$
- ► *t*_w intermediate:
 - \bullet plateau $\mathit{t}_{w}\text{-indep}.$
 - \bullet decay $t_{\rm w}\text{-dependent}$
 - time superposition ?
- t_w large: t_w -indep. \longrightarrow equilibrium

- \blacktriangleright t_w small: no time superposition
- \blacktriangleright t_w intermediate: time superposition
- \blacktriangleright t_w large: superposition includes equilibrium curve

LJ: [Kob & Barrat, PRL 78, 24 (1997)]

Is h dependent on C_q ?

- *t_w* small:
 no superposition
- ► t_w intermediate: superposition of $C_{q'}(C_q)$ $\Rightarrow h$ indep.of C_q
- t_w large: superposition includes equilibrium curve

LJ: [Kob & Barrat, EPJ B 13, 319 (2000)]

Dynamic Susceptibility

$$\begin{split} \chi_4(t_{\rm w}, t_{\rm w} + t) &= N_\alpha \left[\left\langle \left(f_{\rm s}(t_{\rm w}, t_{\rm w} + t) \right)^2 \right\rangle - \left\langle f_{\rm s}(t_{\rm w}, t_{\rm w} + t) \right\rangle^2 \right] \\ f_{\rm s}(t_{\rm w}, t_{\rm w} + t) &= \frac{1}{N_\alpha} \sum_{j=1}^{N_\alpha} e^{i \vec{q} \cdot \left(\vec{r}_j(t_{\rm w} + t) - \vec{r}_j(t_{\rm w}) \right)} \\ C_q(t_{\rm w}, t_{\rm w} + t) &= \left\langle f_{\rm s} \right\rangle \end{split}$$

 $\chi_4^{Fs}/\chi_4^{max}(1-Fs) q=1.7 O$

 $\chi_4^{Fs}/\chi_4^{max}(1-Fs) q=1.7 SiO$

Local Incoherent Intermediate Scattering Function

Incoherent Intermediate Scattering Function

