Computer Simulations an Introduction to Scientific Research

Katharina. Vollmayr-Lee Bucknell University

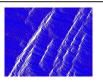
October 30, 2009

Computer Simulations — Intro to Scientific Research

Interdisciplinary Capstone Course (Seniors) : Computer Simulations

Goals:

- computer simulations & modeling
- scientific research


Date	In Class	Individual Project				
	(mostly lab)	(seminar,homework, office hours)				
Jan. 15						
Jan. 20	Introduction to C++	Literature Search (Specify Model)				
Jan. 22						
Jan. 27						
Jan. 29	Cellular Automata:					
Feb. 3	Game of Life	Background Reading				
Feb. 5	Game of Life	Dackground Reading				
Feb. 10						
Feb. 12	Mini Project I					
Feb. 17						
Feb. 19						
Feb. 24	Traffic Flow	Scientific Paper				
Feb. 26						
March 3	Talks Intro					
March 5	Mini Project II					

Date	In Class (mostly lab)	Individual Project (seminar,homework, office hours)				
March 17 March 19 March 24	Talks I	Flow Diagram & Program				
March 26 March 31 April 2 April 7 April 9 April 14	Fractal Growth Project III	Program & Analysis				
April 16	Guest Speaker	Abstract				
April 21 April 23 April 28	Symposium: Talks II	Scientific Paper				

Final Public Talks: Poster

Computer Simulation Symposium

April 21 (Tuesday) in Olin 264:

9:30 am Garrett O'Malley, "Simulations of Front Propagation in a Switching Vortex Array"
9:50 am Steve LoFurno, "Computer Simulation of The Game Risk"
10:10 am Mark Ryan, "A Simulation of Gene Flow in a Species"

April 23 (Thursday) in Olin 264:

9:30 am Rob Trangucci, "Bankruptcy Prediction Modeling Using an Artificial Neural Networks, "Projecting The Incidence of Cornoary Heart Disease" And It's Associated Medical Costs: Ranging From 2005 To 201
10:10 am Kyle VanBuskirk, "Composition of Music With a Computer Simulation"
10:30 am Evan Wessler, "Altruism And The Prisoner's Dilemma: A Computer Simulation"

April 28 (Tuesday) in Olin 264:

9:30 am Kerry Boyle, "Game AI: An Analysis of Adversaries" 9:50 am Deborah Vicinsky, "Prime Number Races" 10:10 am John O'Neill, "Simulation of Our Solar System"

These presentations are part of CAPS 499-11: Computer Simulations (K. Vollmayr-Lee)

Models

In Class Topics:

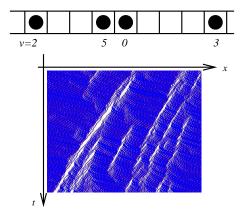
- Game of Life
- Traffic Flow
- Fractal Growth

Student Topics:

- Synchronization of Fireflies
- Protein Folding
- Car Trade
- Foraging Ants
- Forest Fire
- Population Dynamics
- Composition of Music
- Bankruptcy Prediction
- etc.

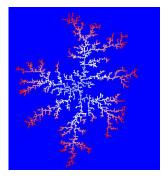
Game of Life

John Conway's Game of Life:


[M. Garnder, Scientific American 223, 120 (1970)]

0	0	0	0	0	0	0	1	1	0	
0	1	0	1	0	0	1	1	0	0	0=
0	0	1	1	0	1	0	0	0	1	1=
0	1	0	1	0	1	1	0	1	1	
1	0	1	0	0	1	0	0	0	0	
0	1	0	0	1	0	0	1	0	0	
0	0	0	0	0	0	1	0	0	1	
1	1	0	0	1	1	0	0	1	0	
0	0	1	0	1	0	0	1	0	0	
0	1	1	0	0	0	0	0	0	0	

0=alive 1=dead


Nagel-Schreckenberg Model:

[D. Chowdhury, L. Santen and A. Schadschneider, Curr. Sci. India 77, 411 (1999)]

Diffusion Limited Aggregation:

[T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981)]

Analysis: Fractal Dimension

Models

In Class Topics:

- Game of Life
- Traffic Flow
- Fractal Growth

Student Topics:

- Synchronization of Fireflies
- Protein Folding
- Car Trade
- Foraging Ants
- Forest Fire
- Population Dynamics
- Composition of Music
- Bankruptcy Prediction
- etc.

Challenges & Successes

Challenges:

- huge variety of programming background
- computer lab with many students but one instructor
- senioritis & last minute work
- time (many research students)

Successes:

- modeling
- research experience
- students diving into project (joy of research)

Course Webpage:

http://www.eg.bucknell.edu/~kvollmay/caps_s2009/

References:

H. Gould and J. Tobochnik, "An Introduction to Computer Simulation Methods"

R. J. Gaylord and P. R. Wellin, "Computer Simulations with Mathematica"