Worksheet For Class 09/08 (Interacting Einstein Solids)

1. Binomial Coefficient

In the following we will use EXCEL to determine multiplicities and therefore we will need the EXCEL command for $\begin{pmatrix} a \\ b \end{pmatrix}$, so "a choose b", or the binomial coefficient. Use the command COMBIN(a,b) in EXCEL for $\Omega(N=3,q=6)=\begin{pmatrix} 8 \\ 6 \end{pmatrix}$ and check if you get the expected result (see solutions to today's homework #6).

- **2. Einstein Solids** $N_A = N_B = 3$ $q_{\text{tot}} = q_A + q_B = 6$ (Problem 2.9) Use EXCEL to reproduce Fig. 2.4 (table & graph) on page 57, so for two Einstein solids with $N_A = N_B = 3$ $q_{\text{tot}} = q_A + q_B = 6$. At the beginning of your table set the parameters N_A , N_B , and q_{tot} and refer to these parameters with absolute references in your table.
- 3. Einstein Solids $N_A = 6$ $N_B = 4$ $q_{\text{tot}} = q_A + q_B = 6$ (Problem 2.9 continued) Modify your table and graph to show the case $N_A = 6$ $N_B = 4$ $q_{\text{tot}} = q_A + q_B = 6$. Assuming that all microstates are equally likely, what is the most probable macrostate, and what is its probability? What is the least probable macrostate, and what is its probability?
- **4. Einstein Solids** $N_A = 60$ $N_B = 40$ $q_{\text{tot}} = q_A + q_B = 60$ Now let's just scale up our system size. Modify your table and graph to show the case $N_A = 60$ $N_B = 40$ $q_{\text{tot}} = q_A + q_B = 60$. Compare the resulting graph with your result in 3.

5. (if time)

Try to increase the size even more, so $N_A = 300$ $N_B = 200$ $q_{\text{tot}} = q_A + q_B = 300$ and also $N_A = 600$ $N_B = 400$ $q_{\text{tot}} = q_A + q_B = 600$.

Read: §2.4 Homework #7: 2.10 & 2.11