Introduction: Glass
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FIG. 1. Flow curves o(y) for various volume fractions ¢ = 0.75,
0.77,0.78,0.79,0.7925, 0.7935, 0.795, 0.8, 0.805, 0.81 (from bottom
to top).

zero stress, o, = 0. We will show in the following how a
simple change to finite and constant friction coefficient & # 0
can fundamentally change this picture.

Results. In Figs. | and 2 we display the flow curves and the
associated viscosities of our frictional simulations. By varying
the volume fraction we go through the jamming transition and
observe the associated changes in the flow behavior. At small
volume fractions, below the jamming transition, we observe
a Newtonian regime o = ngy, with a strain-rate-independent
viscosity ng(¢) that increases with volume fraction. At high
densities, above jamming, the stress levels off at the yield
stress, oy (¢) = a(y — 0,9).

In frictionless systems the jamming transition is associated
with “critical” shear thinning o ~ y* (x < 1, power-law
fluid) {1 1,12,14]. Here, surprisingly, the opposite is happening:
Jamming is signalled by a shear-thickening regime that grows
stronger with increasing the volume fraction. At¢ = 0.78 only
a mild increase of the viscosity is observed, before it drops in
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FIG. 2. (Color online) Viscosity 1 = o/y vs stress o for various

volume fractions ¢ = 0.77...0.81 (N = 4900). As acomparison the
data from the N = 10000 system are given with small (red) symbols.
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FIG. 3. (Color online) Probability distribution of stress values for
different volume fractions ¢ and for y = 2 x 107, The double-peak
structure (for ¢ = 0.795) indicates the coexistence of jamumed and
viscous flow regimes. Inset: Stress-strain relation in the coexisting
state.

the shear-thinning regime. At ¢ = 0.7935 the viscosity already
increases by about an order of magnitude.

The stress scale in the thickening regime (as characterized,
for example, by the stress at the viscosity maximum) is nearly
independent of volume fraction. By way of contrast, the strain
rate for the onset of thickening decreases with volume fraction
(the thickening regime shifts to the left in Fig. 1). This shift
does not go down to y — 0. Rather, at about ¢ = 0.795,
the solid data points in Fig. | indicate qualitatively different
behavior: the coexistence of jammed solid and freely flowing
fluid states. This is evidenced in Fig. 3. For the solid data
points the stress distribution is bimodal (black star) and the
stress-strain relation shows sudden switching events from
low-stress (fluid) to high-stress (solid) states. By way of
contrast, in the (continuous) thickening regime (red plus, green
cross) the stress distributions have only one peak. As can be
seen in the figure, the tails of this distribution are rather broad,
indicative of giant stress fluctuations.

Discussion. The observed phenomena are strongly rem-
iniscent of critical behavior. The coexistence of flowing and
Jjammed states then signals a discontinuous jamming transition
(similar to the dry granular flow of Ref. [18]). The coexistence
region seems to be terminated by a “critical point” at a
certain (nonzero) value of stress, an associated strain rate,
and a volume fraction (o.,y.,¢.), at which the transition is
continuous. The shear-thickening regime then corresponds to
the near-critical “isochores” close to but above this point.

Evidence of this scenario of a finite-stress critical point
is provided by the fact that stress fluctuations in the shear-
thickening regime are strongly enhanced. Equally important,
a large correlation length indicates cooperative behavior, To
extract such a length scale we calculate the velocity correlation
function C,(x) = (vy(x)v,(0)), where we concentrate on the
velocity component in the gradient direction v, of two particles
separated by x in the flow direction. In the frictionless system
this correlation function has been used to evidence a correlation
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We expand in fluctuations around the c;tatlonary state:
n=ng+0nT ="Ty+ 6T and I' = 'y + 6. The colli-
sion frequency should be proportional to the density, the
pair correlation function at contact, x, and the thermal
velocity: veon o nxT1/?, hence hnearlzatlon around the
stationary state I'g yields: T ~ ['g(14 22 on —l— = dn SXon+ 36T)

Following van Noije et al. [19], we con31der a hydro-
dynamic description of a granular fluid based on conser-
vation of particle number and momentum and the re-
laxation of temperature to its stationary value, Ty. The
transverse momentum decouples so that we are left with
three equations for the fluctuating density dn, the longi-
tudinal flow velocity u(q,t) = q-u/q, and the fluctuating
temperature 67

dion(q,t) = —ignou(q,t) (15) -
g (0Op Op

duu(a,t) =~k (Lontat) + 220T(@D) (19
— ug*u(q,t) + &(q, )

200
0.0T(a,) = ~Drg*6T(a,t) — ig 3 u(a, ) (17)
on(q,t) = 1dx 367(q,t)
FO ( ) + X d 5 ( ) T 2 To

+ 9(q,t),

where D7 = =& with the heat conductivity x, and where

V) is the longltudmal viscosity. Fluctuating hydrodynam-
ics for an elastic fluid (e = 1) is based on internal noise,
in and #'", consistent with the fluctuations-dissination



