particle i at time z. We furthermore show in Fig. 6 the MSD as
a function of time ¢ for subsets defined based on the particles*
squared displacements (r;(fo +1) —r;(t9)):

- the fastest 10% of all particles (red full line),

- the fastest 20% of small particles (red dashed-dotted line),

- the slowest 10% of all particles (blue full line),

- the slowest 20% of small particles (blue dashed-dotted
line)

and compare them to the corresponding quantities for all
particles.

We find, in accordance with Fig. 13 of [10], a vast differ-
ence between fast and slow particles. While the 10% fastest
particles move a distance several times the radius | of the
small particles, the slowest 10% of particles barely move. The
restriction to small particles does not significantly change this
observation. The drastic differences of particle mobility give
us an idea of the strength of the dynamical heterogeneity.

The full distribution of displacements in the x-direction,
Ax(t) = [xi(r0 +1) —xi{t0)] at a fixed time difference ¢ is shown
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FIG. 7: (Color online) (a) Distribution of small particle
displacements for different packing fractions ¢ = 0.805,
0.78, and 0.60 (from right to left) at time 7. (b) Distribution
of small particle displacements for ¢ = 0.78 at different times
1t =0.011y, t = Ty and t = 8.57, (from left to right). The tails
of the distributions are better described by an exponential fit
(solid lines) than by a gaussian fit (dotted-dashed lines).

in Fig. 7(a) for various packing fractions and in Fig. 7(b) for
several times ¢. For a fluid far from dynamical arrest, the
particles are expected to perform a simple random walk, and
the displacement distributions are expected to have a Gaus-
sian form Py(Ax,t) = (1/v/4nDt) exp[—(Ax)?/(4Dt)], where
D is the diffusion coefficient. Gaussian fits to the data, with D
used as a fitting parameter, are shown with dotted-dashed lines
in Fig. 7. We observe that the distributions deviate strongly
from the Gaussian fit for all packing fractions and times. The
tails of the distributions follow approximately exponential be-
havior, P,(Ax,t) o< exp(—|(Ax)/xo(t)|), shown as solid lines.
Also, the tails become wider both for increased packing frac-
tion and for longer times. Exponential tails have been studied
also in non-dissipative glassy systems [20-22] and have been
established as an indirect signature of spatial dynamical het-
erogeneity [22].

Another expected consequence of the presence of heteroge-
neous dynamics is that supercooled liquids near the glass tran-
sition in 3D violate both the Stokes-Einstein relation D /T =
const [ 1, 2] connecting the diffusion coefficient D with the vis-
cosity 7, and the related condition Dty /T = const’ connect-
ing D with the a.-relaxation time 7. Both ratios, D1 /T and
D1y /T, show strong increases as the liquid approaches dy-
namical arrest. In two dimensional thermal systems, a slightly
different phenomenology has been found [23]: both ratios be-
have as power laws as functions of temperature, even far from
dynamical arrest, but the exponents for the power laws show
significant changes as the liquid goes from the normal regime
to the supercooled regime.

In our case, we focus on the relation between D and 7g.
‘We obtain the values of D by fitting the long time limit of the
MSD (see Eq. (8)) with the form A(r) = 4Dz. This is known to
be problematic in 2D, because long time tails of the velocity
autocorrelation threaten the existence of hydrodynamics [10].
However, these tails are strongly suppressed in the vicinity of
the glass transition, so that the above naive definition of D is
presumably only weakly — if at all — affected.

Fig. 8 is a plot of D as a function of T4, for all values of
¢. For packing fractions not too close to dynamical arrest, a
power law behavior D o 75,9 is found, with 8 = 1.47. For
higher packing fractions, one observes a crossover to a power
law with a different exponent, 6’ =~ 0.91. These results are
similar to the above mentioned results of Ref. [23] for 2D non-
dissipative glass forming systems.

C. Clusters of slow and fast particles

In this section we investigate directly the spatial distribu-
tion of dynamical heterogeneities. We look at the whole sys-
tem as one unit, instead of dividing it into sub-boxes.

To visually observe dynamical heterogeneity in our system
we color—code particles according to their mobility. As in
Sec. Il A, we define slow particles as those that for a given
time interval 7 have a displacement smaller than the cutoff a.
Additionally, we define fast particles as those that in the same
time interval have a displacement larger than 3a. The spatial
distribution of slow and fast particles is shown in Fig. 9, for
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Simulating Active Particles Driven by Shot Noise to Find Velocity Distributions

Scan McMahon
(Dated: 6 May 2015)

We study active particles which convert an internal encrgy source into motion to propel them-
sclves. We introduce a model for these active particles to study their motion in a viscous medium.
In particular, we consider a model in which the self-propelling kicks occur randomly according to a
Poisson process and are modeled as white shot noise of constant size. Using an event driven simula-
tion, we determince the velocity distributions for particles of this kind and classify it as anomalous,
mecaning non-Maxwell-Boltzmann, with exponential tails.

I. INTRODUCTION

There has been interest in understanding the behavior
of systems of what is known as active matter, meaning
a particle propelled by an internal cnergy supply. The
study of these active particles is particularly relevant to
biological systems such as protcins and bacteria. Par-
ticles undergoing Brownian motion will have Maxwell-
Boltzmann velocity distributions. It is the introduction
of a sclf propelling force that leads to an anomalous veloc-
ity distribution. Stationary probability distributions for
various models of self-propelling forces have been been
known for some time [1], and with growing intercst in
active matter in recent years, the study of anomalous
velocity distributions has progressed. Recently further
studies on the dynamics of these active particle systems
have used thcoretical and experimental methods. Ex-
perimental data taken from multiple cell types was used
in Ref. {2] to study the characteristics of the velocity
distributions of the these cells and analysis revealed ex-
ponential distributions and work in Ref. [3] has resulted
in a deeper understanding of the underlying mechanisms.

Simulations of these particles moving through gran-
ular fluids have also provided many insights including
one study which examined the behavior of these par-
ticles through simulating the dynamics of an intruder
particle in a three-dimensional granular fluid [4]. In a
simulation with a similar physical model and simulation
algorithm, velocity distributions for these active parti-
cles were found numerically and compared to a theoreti-
cal model [5]. This simulation agrced with the proposed
theory and revealed a dependence in the velocity distri-
butions only on the damping constant of the medium and
the frequency of the random kicks. These two simulations
introduce shot noise as the models for the self-propelling
kicks of the active matter as we do in our active particle
model.

The model introduced in this paper follows a similar
physical model introduced in the above mentioned sim-
ulations [4, 5]. We investigate particles moving in one-
dimension with periodic boundary conditions. The ran-
dom kicks arc modeled as white shot noise of constant
size. Using an event driven simulation, we find and char-
acterize the velocity distribution of this system.

II. MODEL

In this project we explore the velocity distributions of
active particles in one-dimension with periodic boundary
conditions. The motion of the ith particle is governed by
the stochastic differential cquation

dZUi
My = flzi,0i) + (i, vi)E. o
The random variable £ represents the self-propelling force
of the particles. We consider the motion of these parti-
cles in a viscous material with damping constant ¥ which
yiclds a simplified equation of motion:

2y,

dt?

m = —yv; +&. 2
This is known as the Langevin equation and is often used
to model Brownian motion {6].

This cquation is derived straight from Newton’s sec-
ond law. —~v is a damping forcc from the viscous
medium and £ is a random variable representing the self-
propelling force of the active particles. £ can be mod-
eled as a number of diffcrent random processes. When
modeling Brownian motion, £ is taken to be a process
of Gaussian whitc noise, which is often used to repre-
sent thermal fluctuations. This model would result in an
cquilibrium system for which we would expect to find the
Maxwell-Boltzmann velocity distribution [6].

Other random processes can be used for £ to model
non-equilibrium systems such as that of active particles.
To model the random kicks of the active particles, we use
shot noisc given by

€5 =Y h{t—t), 3)

where h is a function describing the kick and ¢; is the time
of the ¢th kick. The times inbetween successive kicks
are drawn from a Poissonian exponential waiting time
distribution

P{t) = Ae™, (4)



where X is the kick rate. We specifically consider white
shot noise in which the function h is proportional to a
Dirac ¢ function. We consider these ¢ function peaks to
be of constant size so that the effect of every kick is of
the same size. Taking these kicks to be § functions, their
effects on the particles are instantaneous and result in an
immediate change in velo¢ity.

Since we use white shot noise, between kicks and col-
lisions the Langevin equation simplifies to the following
solvable ordinary differential equation

muv; = —yv;. (5)

Solving Eq. § yields an expression for the velocity of par-
ticle ¢ at any given time t following an event at time to:

v (t) = vi(to)e Y10, (6)

Integrating Eq. 6 we find the position of each particle i
at any given time t following an event at time to:

— e (t—1o)

Blt) = o) +ulto) (1)

Eq.’s 6 and 7 give the velocities and position of each
particle for any time t, respectively and are valid until
another kick or collision occurs.

Since the equation of motion can be solved analyti-
cally for time intervals without a kick or collision event,
the collisions can be handled independently. The parti-
cles move in only one-dimension with periodic boundary
conditions, so we need only consider collisions between
adjacent particles. Using Eq. 7 we solve for the time of
the next collision for any two adjacent particles to be

t=t0—lln<l—w>, (8)
v v1(to) — vz(to)
where ¢y is the time of the last kick or collision.

Using Eq. 8 along with the random kick times drawn
from the Poissonian distribution, we implement an event-
driven simulation based on the algorithm used in Ref. [4],
where the key events are the random kicks and collisions
between any two adjacent particles. According to this
algorithm, we find the time of the next event and jump
forward to that point and appropriately handle the inter-
action. In the case of a kick, we adjust the velocity based
on the constant size of the Dirac § functions. We treat
the collisions as elastic and use a minimum image ap-
proach to account for the periodic boundary conditions
ultimately resulting in a swap of velocities for the two
colliding particles.

III. RESULTS

We use the event driven model outlined above to simu-
late the interactions of 500 active particles with a damp-
ing rate v = 1. The waiting times inbetween the random
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FIG. 1: Velocity distribution of 500 runs with 500 particles
each

kicks for each particle are drawn from the Poissonian
distribution of Eq. 4, where the kick rate was chosen to
be A = 1. We consider the random kicks of the self-
propelling active particles to be of constant size, mean-
ing we take the random variable £, which represents these
random kicks, to equal 1 at the times of the kicks and
0 at all other times. The 500 particles began in an ini-
tial state evenly distributed across a one dimensional line
with velocities drawn from a Maxwell-Boltzmann distri-
bution with ¢ = 1. The simulation ran until { = 100.0
and the distribution of velocities compiled from 500 runs
of 500 particles is shown in Fig. 1.

Normalizing this distribution we fit a Gaussian of the
form:

P(v) = Ae~(v—v0)*/o (9)

in an attempt to characterize the velocity distribution.
Fig. 2 shows the raw probability density data with the
Gaussian fit (solid curve in Fig.2). Fig. 3 shows a plot of
In(P(v)) vs. v with a parabolic fit (solid curve in Fig. 3).
From these two plots we conclude our system does not
finish in equilibrium. We find a higher probability of

0.04 — =

FIG. 2: Normalized velocity distribution (blue dots) with a
Gaussian distribution fit (solid red curve).
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FIG. 3: Normalized velocity distribution on logarithmic scale
(blue dots) with parabolic fit (solid red curve).
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FIG. 4: Distribution of velocity magnitudes (blue dots) with
exponential decay fit (solid red curve).

particles having a large velocity in magnitude than we
would see in an equilibrium system. These higher proba-
bilities correspond to particles that have just undergone
a random kick. We also see more particles with small
velocities close to zero. This is a result of the damping
force in our systems so particles having not experienced a
kick or collision for a long time will have small velocities.

To further characterize the behavior of the system, we
show in Fig. 4 the distribution of the magnitudes of the
velocities. We find good agreement with an exponential

decay fit (solid curve in Fig. 4) to this distribution. To
further analyze the distribution, we plot In(P(v)) vs. v
in Fig 5 and find a clearly linear region in the tails of
the distribution (solid line in Fig. 5). We are unable to
characterize the peak or the distribution as a whole due
to the complicated dynamics of including random kicks,
collisions, and damping.

IV. CONCLUSION

We've discussed a physical model for studying of the
behavior of active matter. We considered these active
particles to have an internal energy supply which allows
the particles to self-propel through a viscous medium.
We modeled the internal kicks as white shot noise and
of constant size and include elastic collisions on a onc-
dimensional line with periodic boundary conditions. Us-
ing an event driven simulation, we studied the dynamics
of these particles and concluded they follow an anoma-
lous velocity distribution with exponential tails. Future
work could include systems with white shot noise kicks
of varying size, or systems with random kicks modeled
by colored shot noise.
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FIG. 5: Distribution of velocity magnitudes on logarithmic
scale (blue dots) with linear fit in the tail (solid red line).
The fit reveals exponential behavior in the tails of the velocity
distribution.
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