Summary for Exam 1

Ideal Gas:

$p V=N k T=\nu R T$ and microscopic picture
Equipartition Theorem:
$U_{\text {therm }}=N \frac{f}{2} k T \quad($ apply and determine $f)$
1st Law of Thermodynamics:
$\Delta U=Q+W \quad W=-\int p \mathrm{~d} V$
($p V$ diagrams, adiabat, isotherm, straight lines)
Heat Capacities and Enthalpy:
$C=\frac{Q}{\Delta T} \quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \quad C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}$
$C=m c$
$H=U+p V$ (apply to reactions; if on exam, then table will be provided)
Heat Conduction, Diffusion: microscopic picture

Multiplicities:

systems: 2-state, Einstein solid, ideal gas (\& similar) derive $\Omega, \Omega_{\mathrm{tot}}$, apply Stirling formula and $\ln (1+x) \approx x$, know EXCEL commands

Entropy: $S=k \ln \Omega$
determine $S, \Delta S$
2nd Law of Thermodynamics: major concept

Formulae for Exam \#1

$$
\begin{gathered}
k=1.381 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}=8.617 \cdot 10^{-5} \mathrm{eV} / \mathrm{K} \\
h=6.626 \cdot 10^{-34} \mathrm{Js}=4.136 \cdot 10^{-15} \mathrm{eVs} \\
N_{\mathrm{A}}=6.022 \cdot 10^{23} \\
\Delta U=Q+W_{\text {on }} \quad \text { where } \quad W_{\text {on }}=-\int p \mathrm{~d} V \\
C=\frac{Q}{\Delta T} \\
p V=N k T \quad p V^{\gamma}=\text { const., where } \gamma=(f+2) / f \\
U=\frac{f}{2} N k T \quad \begin{array}{c}
2 \\
2
\end{array} \quad \text { for each quadratic degree of freedom } \\
H=U+p V \\
\Omega=\left(\begin{array}{c}
q+N-1 \\
q \quad
\end{array} \quad \Omega=\binom{N}{n}=\frac{N!}{n!(N-n)!}\right. \\
\ln N!\approx N \ln N-N \quad \ln (1+x) \approx x \\
S=k \ln \Omega
\end{gathered}
$$

Ideal Gas: (1 J)

For an ideal gas you change
$p \rightarrow 3 p \quad N \rightarrow 4 N \quad V \rightarrow 8 V$
Question: How does T change? $T \rightarrow$?

Ideal Gas: (1 J)

For an ideal gas you change
$p \rightarrow 3 p \quad N \rightarrow 4 N \quad V \rightarrow 8 V$
Question: How does T change? $T \rightarrow$?
Answer:
$p V=N k T \longrightarrow T=\frac{p V}{N k}$
$T \rightarrow \frac{(3 p p)(8 V)}{(4 N) k}=6 \frac{p V}{N k}=6 T$

Ideal Gas: (2 J)

An ideal diatomic gas is made to undergo the following process:

Question: For this process fill all empty entries in the following table with,+- , or 0 depending on the sign of each quantity.

	W	Q	ΔU
$A \rightarrow B$			
$B \rightarrow C$			
$A \rightarrow B \rightarrow C \rightarrow A$			

Ideal Gas: (2 J)

An ideal diatomic gas is made to undergo the following process:

Question: For this process fill all empty entries in the following table with,+- , or 0 depending on the sign of each quantity.

Answer:

	W	Q	ΔU
$A \rightarrow B$	0	+	+
$B \rightarrow C$	-	+	+
$A \rightarrow B \rightarrow C \rightarrow A$	-	+	0

Ideal Gas: (3 J)

An ideal diatomic gas at very high temperature is compressed along an isotherm as sketched in the figure below.

Question: For this process determine $\Delta U, Q$, and W.
Express your results in terms of $p_{\mathrm{B}}, V_{\mathrm{A}}$, and V_{B}.

Ideal Gas: (3 J)

An ideal diatomic gas at very high temperature is compressed along an isotherm as sketched in the figure below.

Question: For this process determine $\Delta U, Q$, and W.
Express your results in terms of $p_{\mathrm{B}}, V_{\mathrm{A}}$, and V_{B}.
Answer:
$W=-\int p \mathrm{~d} V=-\int \frac{N k T}{V} \mathrm{~d} V=-N k T \int \frac{1}{V} \mathrm{~d} V=-\left.N k T \ln V\right|_{V_{\mathrm{A}}} ^{V_{\mathrm{B}}}$
$W=-p_{\mathrm{B}} V_{\mathrm{B}} \ln \left(\frac{V_{\mathrm{B}}}{V_{\mathrm{A}}}\right)$
$\Delta U=\frac{f}{2} N k \Delta T=0$
$\Delta U=Q+W \quad \longrightarrow \quad Q=-W=p_{\mathrm{B}} V_{\mathrm{B}} \ln \left(\frac{V_{\mathrm{B}}}{V_{\mathrm{A}}}\right)$

Mulplicities \& Entropy: (1 J)

Question:

What is Ω for an Einstein solid, $\Omega(q, N)$?

Mulplicities \& Entropy: (1 J)

Question:

What is Ω for an Einstein solid, $\Omega(q, N)$?
Answer:

$$
\Omega(q, N)=\binom{q+N-1}{q}=\frac{(q+N-1)!}{q!(N-1)!} \approx \frac{(q+N)!}{q!N!}
$$

Mulplicities \& Entropy: (2 J)

Question:

Approximate $\Omega(q, N)=\frac{(q+N)!}{q!N!}$ assuming that both q and N are very large, and that $q \gg N$ (that corresponds to large temperature. Do the derivation (even if you remember the result).

Mulplicities \& Entropy: (3 J)

Question:

Approximate $\Omega(q, N)=\frac{(q+N)!}{q!N!}$ assuming that both q and N are very large, and that $q \gg N$ (that corresponds to large temperature. Do the derivation (even if you remember the result).

Answer:

$$
\begin{aligned}
\ln \Omega(q, N) & \approx(q+N) \ln (q+N)-(q+N)-q \ln q+q-N \ln N+X \\
& =(q+N) \ln (q+N)-q \ln q-N \ln N \\
& =(q+N) \ln \left(q\left(1+\frac{N}{q}\right)\right)-q \ln q-N \ln N \\
& =(q+N) \ln q+(q+N) \ln \left(1+\frac{N}{q}\right)-q \ln q-N \ln N \\
& \approx(q+N) \ln q+(q+N)\left(\frac{N}{q}\right)-q \ln q-N \ln N \\
& =q \ln q+N \ln q+N+\frac{N^{2}}{q}-q \ln q-N \ln N \\
& \approx q \ln q+N \ln q+N-q \ln q-N \ln N \\
& =N \ln \left(\frac{q}{N}\right)+N
\end{aligned}
$$

$$
\ln \Omega(q, N)=\ln \left(\frac{q}{N}\right)^{N}+\ln \left(e^{N}\right)
$$

$$
\Omega=e^{\ln \Omega} \approx\left(\frac{q e}{N}\right)^{N}
$$

Mulplicities \& Entropy: (2 J)

For the Einstein solid with $q, N \gg 1$ and the case $q \ll N$ (low temperature) the multiplicity is approximately

$$
\Omega \approx\left(\frac{N e}{q}\right)^{q}
$$

Question:

Determine ΔS if you keep q fixed but increas N to $3 N$.

Mulplicities \& Entropy: (2 J)

For the Einstein solid with $q, N \gg 1$ and the case $q \ll N$ (low temperature) the multiplicity is approximately

$$
\Omega \approx\left(\frac{N e}{q}\right)^{q}
$$

Question:

Determine ΔS if you keep q fixed but increas N to $3 N$.
Answer:

$$
\begin{aligned}
\Delta S & =S(q, 3 N)-S(q, N)=k \ln \Omega(q, 3 N)-k \ln \Omega(q, N) \\
& =k q \ln \left(\frac{3 N e}{q}\right)-k q \ln \left(\frac{N e}{q}\right) \\
& =k q \ln \left(\frac{3 N e / q}{N e / q}\right)=k q \ln 3
\end{aligned}
$$

Equipartition Thm \& Heat Capacity: (1 J)

Question:

Determine the number of degrees of freeedom for SiO_{2} at very high temperature.

Equipartition Thm \& Heat Capacity: (1 J)

Question:

Determine the number of degrees of freeedom for SiO_{2} at very high temperature.

Answer:

$f=3$ translational +3 rotational $+3 \times 2$ vibrational $f=12$

Equipartition Thm \& Heat Capacity: (2 J)

Question:

For a diatomic ideal gas at high temperature determine C_{p} for a given T, N, p.

Equipartition Thm \& Heat Capacity: (2 J)

Question:

For a diatomic ideal gas at high temperature determine C_{p} for a given T, N, p.

Answer:

$$
\begin{aligned}
C_{p} & =\left(\frac{Q}{\Delta T}\right)_{p} \stackrel{{ }^{\text {stLaw }}}{=}=\left(\frac{\Delta U-W}{\Delta T}\right)_{p}=\left(\frac{\partial U}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p} \\
& \stackrel{\text { diatom..highT }}{=} \frac{\partial}{\partial T}\left(N \frac{(3+2+2)}{2} k T\right)_{p}+p \frac{\partial}{\partial T}\left(\frac{N k T}{p}\right)_{p} \\
& =\frac{7}{2} N k+N k=\frac{9}{2} N k
\end{aligned}
$$

