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Shear thickening in granular suspensions: Interparticle friction and dynamically correlated clusters
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We consider the shear rheology of concentrated suspensions of non-Brownian frictional particles. The key
result of our study is the emergence of a pronounced shear-thickening regime, where frictionless particles would
normally undergo shear thinning. We can clarify that shear thickening in our simulations is due to enhanced energy
dissipation via frictional interparticle forces. Moreover, we evidence the formation of dynamically correlated
particle clusters of size ξ , which contribute to shear thickening via an increase in viscous dissipation. A scaling
argument gives for the associated viscosity ηv ∼ ξ 2, which is in very good agreement with the data.
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Concentrated suspensions of colloidal particles display
interesting non-Newtonian rheological behavior [1]. Shear
thickening, i.e., the increase of viscosity with shear rate, is
among the most well known effects, and has been studied for
many years. In recent years a picture of shear thickening has
emerged [2–4] that is based on the notion of hydroclusters,
long-lived particle clusters that are stabilized via singular
lubrication forces. With confocal imaging techniques it is
now possible to visualize these clusters [4], and a quantitative
understanding of the connection between cluster formation
and shear thickening is within reach.

Another mechanism for shear thickening in dense non-
Brownian granular suspensions has been discussed recently
in a series of articles [5–8]. The idea is that granular systems
dilate, i.e., they want to expand when made to flow. Under
conditions of constant volume this leads to an increase
in normal stress and, subsequently, an increase in shear
resistance. With hydrodynamic thickening leading to a modest
viscosity increase, dilation is a huge effect and may effectively
jam the suspension into a dynamically arrested state [9,10].

Here, we use computer simulations to study the role of
interparticle friction in the shear rheology of dense non-
Brownian suspensions. Introducing a particle stiffness k, it
is possible to study the transition from the fluid to the plastic
flow regime (with a yield stress σy ∼ k) by increasing the
volume fraction φ through the jamming transition at φc.
Several studies are concerned with frictionless particles and
scaling laws have been proposed that characterize the jamming
transition [11–15]. The main result is that dense frictionless
systems generically are shear thinning [11,14]. The role of
friction has also been studied in a variety of contexts [16–20]
and the most important effect seems to be the mere shift of
the critical density to lower values. The exception is the work
of Otsuki et al. [18], where a discontinuous jump between
coexisting fluid and solid branches has been observed. This
constitutes the first example of discontinuous shear thickening
in a dry granular powder.

In the present Rapid Communication on granular sus-
pensions, we will recover this discontinuity. What is more
intriguing, however, is a second regime of “continuous” shear
thickening, which we explain from the enhanced viscous
dissipation of dynamically correlated particle clusters.

Model. We consider a two-dimensional (d = 2) system of
N soft spherical particles. The particle volume (area) fraction
is defined as φ = ∑N

i=1 πR2
i /L

2, where L is the size of the

simulation box and Ri is the radius of particle i. To avoid
crystallization, we take one half of the particles (“small”) with
radius Rs = 0.5d, the other half (“large”) with radius Rl =
0.7d. Periodic (Lees-Edwards) boundary conditions are used
in both directions.

Particles interact via a standard spring-dashpot interaction
(similar to, e.g., Refs. [18,19,21]). Two particles i,j interact
when they are in contact, i.e., when their mutual distance r

is smaller than the sum of their radii Ri + Rj . The normal
component of the interaction force is Fn = kn[r − (Ri + Rj )]
− γnδvn, where kn is the spring constant, γn the dashpot
strength, and δvn the relative normal velocity of the two
contacting particles. The tangential component is Ft = ktδt ,
with δt the tangential (shear) displacement since the formation
of the contact. The tangential spring mimics sticking of the
two particles due to dry friction. These frictional forces are
limited by the Coulomb condition Ft � μFn, with a constant,
i.e., velocity independent friction coefficient μ.

The system is sheared at a shear rate γ̇ . Newton’s equations
of motion m�̈ri = �F cont

i + �F visc
i are integrated with contact

forces as specified above and a viscous drag force, which
implements the shear flow. The drag force �F visc(�vi) = −ζ δ�vi

is proportional to the velocity difference δ�vi = �vi − �vflow be-
tween the particle velocity �vi and the flow velocity �vflow(�ri) =
�exγ̇ y [11,22–24]. The friction coefficient ζ represents the
viscosity of the surrounding fluid, ζ ∝ ηf . Fluctuations of the
flow field as well as hydrodynamic interactions, in particular,
lubrication forces, are neglected. Note that this automatically
excludes hydrodynamic forces as the possible origin for the
shear-thickening phenomena that will be discussed below. In
fact, this tailoring of the interaction forces is a key ingredient
of our study, because it allows to pinpoint the ultimate cause
of the shear thickening in the frictional component.

As units we choose particle mass density ρ, particle
diameter d, and the spring constant kn. With these defini-
tions we perform molecular dynamics simulations using the
“Large-scale Atomic/Molecular Massively Parallel Simulator”
(LAMMPS) [25] with parameters γn = 0.1, kt = 2kn/7, a static
friction coefficient μ = 1, viscous drag ζ = 0.1, and a time
step of �t = 0.01. System sizes range from N = 2500 to 4900
particles, with a few simulations ranging up to N = 10 000.

The limit μ → 0 corresponds to the frictionless scenario,
which has been studied, for example, in Refs. [11,12,14].
In these systems jamming is associated with shear-thinning
rheology, governed by a critical point at φc ≈ 0.843 and at
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FIG. 1. Flow curves σ (γ̇ ) for various volume fractions φ = 0.75,
0.77, 0.78, 0.79, 0.7925, 0.7935, 0.795, 0.8, 0.805, 0.81 (from bottom
to top).

zero stress, σc = 0. We will show in the following how a
simple change to finite and constant friction coefficient μ �= 0
can fundamentally change this picture.

Results. In Figs. 1 and 2 we display the flow curves and the
associated viscosities of our frictional simulations. By varying
the volume fraction we go through the jamming transition and
observe the associated changes in the flow behavior. At small
volume fractions, below the jamming transition, we observe
a Newtonian regime σ = η0γ̇ , with a strain-rate-independent
viscosity η0(φ) that increases with volume fraction. At high
densities, above jamming, the stress levels off at the yield
stress, σy(φ) = σ (γ̇ → 0,φ).

In frictionless systems the jamming transition is associated
with “critical” shear thinning σ ∼ γ̇ x (x < 1, power-law
fluid) [11,12,14]. Here, surprisingly, the opposite is happening:
Jamming is signalled by a shear-thickening regime that grows
stronger with increasing the volume fraction. At φ = 0.78 only
a mild increase of the viscosity is observed, before it drops in
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FIG. 2. (Color online) Viscosity η = σ/γ̇ vs stress σ for various
volume fractions φ = 0.77 . . . 0.81 (N = 4900). As a comparison the
data from the N = 10 000 system are given with small (red) symbols.
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FIG. 3. (Color online) Probability distribution of stress values for
different volume fractions φ and for γ̇ = 2 × 10−7. The double-peak
structure (for φ = 0.795) indicates the coexistence of jammed and
viscous flow regimes. Inset: Stress-strain relation in the coexisting
state.

the shear-thinning regime. At φ = 0.7935 the viscosity already
increases by about an order of magnitude.

The stress scale in the thickening regime (as characterized,
for example, by the stress at the viscosity maximum) is nearly
independent of volume fraction. By way of contrast, the strain
rate for the onset of thickening decreases with volume fraction
(the thickening regime shifts to the left in Fig. 1). This shift
does not go down to γ̇ → 0. Rather, at about φ = 0.795,
the solid data points in Fig. 1 indicate qualitatively different
behavior: the coexistence of jammed solid and freely flowing
fluid states. This is evidenced in Fig. 3. For the solid data
points the stress distribution is bimodal (black star) and the
stress-strain relation shows sudden switching events from
low-stress (fluid) to high-stress (solid) states. By way of
contrast, in the (continuous) thickening regime (red plus, green
cross) the stress distributions have only one peak. As can be
seen in the figure, the tails of this distribution are rather broad,
indicative of giant stress fluctuations.

Discussion. The observed phenomena are strongly rem-
iniscent of critical behavior. The coexistence of flowing and
jammed states then signals a discontinuous jamming transition
(similar to the dry granular flow of Ref. [18]). The coexistence
region seems to be terminated by a “critical point” at a
certain (nonzero) value of stress, an associated strain rate,
and a volume fraction (σc,γ̇c,φc), at which the transition is
continuous. The shear-thickening regime then corresponds to
the near-critical “isochores” close to but above this point.

Evidence of this scenario of a finite-stress critical point
is provided by the fact that stress fluctuations in the shear-
thickening regime are strongly enhanced. Equally important,
a large correlation length indicates cooperative behavior. To
extract such a length scale we calculate the velocity correlation
function Cv(x) = 〈vy(x)vy(0)〉, where we concentrate on the
velocity component in the gradient direction vy of two particles
separated by x in the flow direction. In the frictionless system
this correlation function has been used to evidence a correlation
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FIG. 4. Velocity correlation function Cv(x) = 〈vy(x)vy(0)〉 for
different strain rates and φ = 0.7935.

length that diverges in the limits φ → φc ≈ 0.843 and σ →
σc ≡ 0 [11,13].

Figure 4 displays the normalized correlation function for
φ = 0.7935 and a selected set of strain rates. Beyond a
short-range exponential decay, Cv(x) ∼ exp(−x), there is
clear nonmonotonic behavior with strain rate γ̇ , indicating
a maximal correlation range at some finite value γ̇c. This
observation can be quantified by defining the length scale
ξ from fitting a second exponential, Cv ∼ exp(−x/ξ ), as
indicated in the figure.1

The resulting correlation length is displayed in Fig. 5. It
clearly shows nonmonotonic behavior both in strain rate γ̇ and
in volume fraction φ. The position of the absolute maximum
is estimated to be at φc ≈ 0.795, γ̇c ≈ 2 × 10−6, σc ≈ 10−4,

1We have checked that alternative definitions for the length scale ξ

do not change the resulting picture.
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FIG. 5. (Color online) Correlation length as extracted from the
exponential fit to Cv(x) for different volume fractions and strain
rates.

which may serve as a first proxy to the critical point (see below
for further discussion).

Note that in the frictionlesss scenario of Ref. [11] the
correlation length is defined from the minimum of Cv(x).
We also observe a minimum, and its behavior is similar
to the ξ we define. However, finite-size effects due to the
periodic boundary conditions are much stronger and prohibit
a quantitative evaluation.

Relation to experiment. The phenomenology described here
is remarkably similar to the experiments of Lootens et al. [9,10]
as well as those of Brown et al. [6] and Fall et al. [7]. As in
the experiments we observe giant stress fluctuations in the
thickening regime, as well as the coexistence of flowing and
jammed states. Moreover, as in the experiments the normal
stress p is tightly coupled to the shear stress σ , such that
the effective friction coefficient μ = σ/p is constant (≈0.3)
throughout the thickening regime (not shown). Thus, it seems
that dilatancy effects are at the origin of the shear-thickening
regime.

Unlike the experiments of Brown and Fall, however, we do
not observe shear localization. Our system is homogeneous
and the flow profile is linear. Furthermore, a tight coupling
between shear and normal stresses is also observed in
simulations of frictionless particles, with either Newtonian
or even shear-thinning behavior [26–28]. Therefore, beyond
enhanced normal stresses one has to allow for a new channel
of energy dissipation via frictional particle interactions. Such
a channel is absent in frictionless systems.

In Fig. 6 (inset) we compare the work performed by the
external forces (W = L2ηγ̇ 2) with the energy dissipated by
the viscous forces (� = −ζN〈δv2〉). Without friction, both
should be equal to each other, so that the difference is due
to energy dissipation via friction. We see that, indeed, the
shear-thickening regime corresponds to an enhanced frictional
contribution to energy dissipation. However, and perhaps
surprising, even the pure viscous forces do show some
thickening behavior.
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FIG. 6. (Color online) Inset: Comparison of viscosity (logarith-
mic y axis) as taken from Fig. 1 (thin lines) and as determined
from the viscous dissipation �/γ̇ 2 (symbols). Main panel: Scatter
plot of viscous dissipation �/Nγ̇ 2 vs correlation length ξ 2 (circles
φ = 0.7935, triangles 0.7925, diamonds 0.770 . . . 0.790; small open
symbols N = 4900, large solid symbols N = 6400 . . . 8100). There
is a clear linear relation, indicating � ∝ Nγ̇ 2ξ (γ̇ )2.
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To explain this latter contribution, we need to remember
that shear thickening in our system is tightly connected to the
growth of a correlation length. If particles move in correlated
clusters of size ξ , then the typical velocity scales as δv ∼ γ̇ ξ .
This leads to a renormalized energy dissipation � ∼ γ̇ 2ξ 2 and
associated viscosity ηv(γ̇ ) ∼ ξ (γ̇ )2. This relation is plotted
in the main panel of Fig. 6. It holds remarkably well with a
prefactor of order unity.

A similar argument holds in frictionless systems [29,30],
where the relation between correlation length, and velocity
fluctuations can be used to rationalize the divergence of the
(Newtonian) viscosity with increasing the volume fraction
towards the close packing limit, η(φ) ∼ ξ (φ)2. In this picture,
the viscosity diverges at close packing because of the growth
of dynamically correlated particle clusters and an associated
divergence of velocity fluctuations [29,30].

With the equivalence between correlation length and vis-
cosity ηv , we have to reconsider the nature and location of the
critical point. A divergence of the correlation length should
be equally visible as divergence in the viscosity. However, as
discussed in Ref. [6], the shear-thickening regime is limited
from above by an appropriate energy scale which represents
the softest link in the system (there, surface tension of the
air-fluid interface). The viscosity can therefore not grow
beyond this scale. In our system this energy scale is played by
the stiffness kn of the particles. When the viscosity ηv ∼ ζ ξ 2 of
the thickening fluid is comparable to the yield stress σ ∼ kn in
the plastic flow regime, then thickening stops. For the critical

point, this means that it may be hidden within the plastic flow
regime. Hard-sphere simulations, similar to Ref. [15], could
give valuable information in this regard.

In conclusion, we discuss the shear rheology of a non-
Brownian suspension of soft spherical particles. Hydrody-
namic interactions are neglected and we concentrate on the
effects of frictional particle interactions, characterized by a
constant friction coefficient μ. This tailoring of the interaction
forces is a key advantage of our study. With this we can
show that friction does indeed lead to pronounced shear
thickening, unlike in frictionless systems which are shear
thinning. Friction is therefore an essential ingredient for
the thickening behavior observed. Note that similar shear-
thickening phenomena with more complex interaction forces
have been presented just recently in Refs. [31,32]. Going
beyond these studies we observe giant stress fluctuations
and a growing correlation length, which is maximal deep
within the thickening regime. We show that thickening is
partly due to enhanced energy dissipation via frictional
interactions. In addition, dynamically correlated clusters of
size ξ also lead to an increased viscous contribution to the
energy dissipation. A scaling argument gives for the associated
viscosity ηv ∼ ηf ξ 2, which is in very good agreement with
the data.
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