PHYS 317 Fall 2023

Summary for Test 1

Ideal Gas:

 $pV = NkT = \nu RT$ and microscopic picture

Equipartition Theorem:

 $U_{\text{therm}} = N \frac{f}{2} kT$ (apply and determine f and derive for ideal gas)

1st Law of Thermodynamics:

 $\Delta U = Q + W \qquad \qquad W = -\int p dV$ (*pV* diagrams, adiabat, isotherm, straight lines)

Heat Capacities and Enthalpy:

 $C = \frac{Q}{\Delta T} \qquad C_V = \left(\frac{\partial U}{\partial T}\right)_V \qquad C_p = \left(\frac{\partial H}{\partial T}\right)_p$ C = m c

H = U + pV (apply to reactions; if on exam, then table will be provided)

NOT on Test 1 (for Test 2)Heat Conduction, Diffusion: microscopic picture

PHYS 317 Fall 2023

Summary for Test 2

Heat Conduction, Diffusion: microscopic picture

Multiplicities:

systems: 2-state (paramagnet), Einstein solid, ideal gas (& similar) list microstates; derive Ω , Ω_{tot} ; apply Stirling formula and $\ln(1 + x) \approx x$, know EXCEL commands; derive width of Ω_{tot} and know significance of sharp peak

NOT on Test 2: **Entropy:** $S = k \ln \Omega$ determine $S, \Delta S$

2nd Law of Thermodynamics: major concept

SUMMARY FOR TEST 3

SUMMARY FOR TEST4

• Heat Engines & Refridgerators T_h V_{Q_h} $V = \frac{W}{Q_h} = \frac{W_{br}}{Q_h}$ V_{Q_h}

Themodynamic Potentials UF, H, G • themodynamic identities: derive dF=... etc. & Maxwell relations • derive G=MN etc. • dStot > 0 derive dG ≤ 0 -> Q minimum etc. • dStot > 0 derive • apply H, S, G etc. using table

SUM MARY FOR TESTS
Phase Transitions: Mixtures (GG) curves & bugand & phase diagram)
Boltzmann Shilistics:
derivations: const T, V, N
$$\rightarrow$$
 P(s) = $\frac{e^{-E/kT}}{\sum e^{-Es/kT}}$
 $const. T, p, N \rightarrow P(s) = \frac{e^{-(Es+PV_s)/kT}}{\sum e^{-(Es+PV_s)/kT}}$
 $Z = \sum e^{-E(s)/kT}$
 $\overline{X} = \frac{1}{2} \sum_{s} T X(s) e^{-E(s)\beta}$
Applications:
 $for specific Small sch of shies
 $partimized$
 $Show & Use e.g. $E = -\frac{1}{2} \frac{\partial Z}{\partial \beta} = 8 similar relations$
 $equi partition theorem$
 $composite Systems$
 $Max acell dishribution (derive $\overline{v}, \overline{vE}, \overline{vmx}$ etc.)
 $F = -kT \ln Z \longrightarrow S, h$
 $Not: eillend gas: F > ...$$$$

SUMMARY FOR TEST 6 (Z- F=-kTInZ - S, M) · ideal gas : non-relativ. & relativ. · Jsing Model (Ferromagnet) (B=0) o I dim. Z->U MF : derive self-consistent equ. & sleetch to find (B=0 and B>0) 0 (see HW31) · Grand Canonical Distribution o derive RUT o apply: Oz Co, hemoglobin, etc. o(apply +) Bosons & Fermions : microstates, derive ^MFD , ^MBE

NoT: Degenerate Fiermijas

$$L=n\frac{1}{2} \longrightarrow N = \cdots$$

$$\mathcal{E}_{F} = \cdots$$

$$U = \cdots \longrightarrow C$$

Blackbooky Radiation :

$$U_{tot} = \sum_{s} E(s) P(s) = \dots \rightarrow u(e) \& u(d)$$

 $N = \dots$