Advanced Classical Mechanics

Homework Assignment #8 (due: Friday, November 2, 11:30 pm)

1. Tides: Taylor problem (9.5)

Hint: There is no need for you to hand in notes about your review of $U_{\text{tid}}(Q)$. For the derivation of $U_{\text{tid}}(P)$ use the binomial series $(1+z)^n = 1 + nz + \frac{n(n-1)}{2!}z^2 + \dots$ Keep terms up to second order in z. (7P)

2. Azimuthal Force: Taylor problem (9.10) (6P)

3. Lense Production: Taylor problem (9.14) (7P)

Schott (the German equivalent to the glass company Corning) has used this feature to produce a lense with a diameter of 8m. They spun liquid glass while it was cooling down.

4. Frictionless Puck:

4a. Taylor problem (9.20)

Clarification of Hint: For (9.20b) use as second solution $\eta(t) = te^{-i\Omega t}$ and check that this $\eta(t)$ indeed is a solution to the DE for $\eta(t)$. (9P)

4b. Taylor problem (9.24)

Hint: For the interpretation of your plot of d) make also an enlargement for $0.0 \le x \le 1.0$ and $-0.35 \le y \le 0.0$. (6P)

5. Free Fall: Taylor problem (9.26) (7P)

6. Foucault Pendulum: Taylor problem (9.34) (8P)