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CHAPTER 10
Hamilton-Jacobi Theory

It has already been mentioned that canonical transformations may be used to
provide a general procedure for solving mechanical problems. Two methods have
been suggested. If the Hamiltonian is conserved then a solution could be obtained
by transforming to new canonical coordinates that are all cyclic, since the
integration of the new equations of motion becomes trivial. An alternative
technique is to seek a canonical transformation from the coordinates and
momenta, (¢, p), at the time 1, to a new set of constant g nantities, which may be the
2n initial values, (g, po), at + = 0. With such a transformation, the equations of
transformation relating the old and new canonical variables are then exactly the
desired solution of the mechanical problem:

4 = q(qo>Po» )
p= p(qoapo,t)a

for they give the coordinates and momenta as a function of their initial values and
the time. This last procedure is the more general one, especially as it is applicable,
in principle at least, even when the Hamiltonian involves the time. We shall
therefore begin our discussion by considering how such a transformation may be
found. '

10-1 THE HAMILTON-JACOBI EQUATION
FOR HAMILTON’S PRINCIPAL FUNCTION

We can automatically ensure that the new variables are constant in time by
requiring that the transformed Hamiltonian, K, shall be identically zero, for then
the equations of motion are

or, 7

(10-1)
IR k=0
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As we have seen, K must be related to the old Hamiltonian and to the generating
function by the equation
IF

K=H+2,
4T

and hence will be zero if F satisfies the equation
oF

— = 0. 10-2
ot ( )

H(g,p,t) +
It is convenient to take F as a function of the old coordinates g;, the new constant
momenta P, and the time; in the notation of the previous chapter we would
designate the generating function as F,(q, P, ). To write the Hamiltonian in Eq.
(10-2) as a function of the same variables, use may be made of the equations of
transformation (cf. Eq. 9—17a),

OF,
Pi==
q;
so that Eq. (10-2) becomes
OF. OF OF
qu,...,q,,;{ = k¥ ¢ Z_ 0 (10-3)

T2 2=
dq, g, ot

FEquation (10-3), known as the Hamilton—Jacobi equation, constitutes a partial
differential equation in (n + 1) variables, ¢y,..., 4, 1, for the desired generating
function. It is customary to denote the solution of Eq. (10-3) by S and to call it
Hamilton’s principal function.

Of course, the integration of Eq. (10-3) only provides the dependence on the
old coordinates and time; it would not appear to tell how the new momenta are
contained in S. Indeed the new momenta have not yet been specified except that we
know they must be constants. However, the nature of the solution indicates how
the new P/s are to be selected.

Mathematically Eq. (10-3) has the form of a first-order partial differential
equation in 1 +-1 variables. Suppose that there exists a solution to Eq. (10-3) of
the form

Fy=8=5(Gq, s %1 or%yi 15 b -(10-4)

where the quantities o, , ..., o, are n + 1 independent constants of integration.
Such solutions are known as complete solutions of the first-order partial
differential equation.* One of the constants of integration, however, is in fact

* Equation (10-4)is not the only type of solution possible for Eq. (10-3). The most general
form of the solution involves one or more arbitrary functions rather than arbitrary
constants. See, for example, R. Courant and D. Hilbert: Methods of Mathematical Physics,
Vol. 11, 1962, pp. 24-28,and V. L. Smirnov: A Courseof Higher Mathematics, Vol 1V, 1964,
Section 111. Nor is (here necessarily a unigue solution of the form (10-4). There may be
several complete solutions for the given equation. But all that is important for the
subsequent argument is that there exist @ complete solution,
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irrelevant to the solution, for it will be noted that S itself does not appear in Eq.
(10-3); only its partial derivatives with respect to g or { are involved. Hence, if S is
some solution of the differential equation, then S + «, where o is any constant,
must also be a solution. One of the n + 1 constants of integration in Eq. (10-4)
must therefore appear only as an additive constant tacked on to S. But by the
same token an additive constant has no importance in a generating function,
since only partial derivatives of the generating function occur in the
transformation equations. Hence for our purposes a complete solution to Eq.
(10-3) can be written in the form

S=S(G 1 sGy; 0gseer 0y L), (10-5)

where none of the n independent constants is solely additive. In this mathematical
garb S tallies exactly with the desired form for an F, type of generating function,
for Eq. (10-5) presents S as a function of n coordinates, the time ¢, and n
independent quantities «;. We are therefore at liberty to take the n constants of
integration to be the new (constant) momenta:

P=u,. (10-6)
Such a choice does not contradict the original assertion that the new momenta

are connecled with the initial values of g and p at the time ¢,. The n
transformation equations (9—17a) can now be written as

_ 3S(@,%1)

10-7
- (10-7)

i

where g, o stand for the complete set of quantities. At the time ¢, these constitute n
equations relating the n «’s with the initial g and p values, thus enabling one to
evaluate the constants of integration in terms of the specific initial conditions of
the problem. The other half of the equations of transformation, which provide the
new constant coordinates, appear as

_ @0

; 10--8
o (10-8)

Qi:ﬂi

The constant s can be similarly obtained from the initial conditions, simply by
calculating the value of the right side of Eq. (10-8)at t = t, with the known initial
values of g;. Equations (10-8) can then be “turned inside out” to furnish ¢; in
terms of o, 8, and ¢:

q; = q;( f,1), (10-9)
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which solves the problem of giving the coordinates as functions of time and the
initial conditions.* After the differentiation in Egs. (10-7) has been performed,
Eqs. (10-9) may be substituted for the ¢’s, thus giving the momenta p; as functions
of the «, f5, and :

p; = pile, B, 1) (10-10)

Equations (10-9) and (10-10) thus constitute the desired complete solution of
Hamilton’s equations of motion.

Hamilton’s principal function is thus the generator of a canonical
transformation to constant coordinates and momenta; when solving the
Hamilton-Jacobi equation we are at the same time obtaining a solution to the
mechanical problem. Mathematically speaking, we have established an
equivalence between the 2n canonical equations of motion, which are first-order
differential equations, to the first-order partial differential Hamilton-Jacobi
equation. This correspondence is not restricted to equations governed by the
Hamiltonian: indeed the general theory of first-order partial dilferential
equations is largely concerned with the properties of the equivalent set of first-
order ordinary differential equations. Essentially, the connection can be traced to
the fact that both the partial differential equation and its canonical equations
stem from a common variational principle, in this case Hamilton’s modified
principle.

To a certain extent the choice of the o,;’s as the new momenta is arbitrary. One
could just as well choose any 1 quantities, y;, which are independent functions of
the o, constants of integration:

Yi = Vil 0t)- (10-11)

By means of these defining relations Hamilton’s principal function can be written
as a function of ¢, y,, and ¢, and the rest of the derivation then goes through
unchanged. It often proves convenient to lake some particular set of y/’s as the
new momenta, rather than the constants of integration that appear naturally in
integrating the Hamilton—Jacobi equation.

* As a mathematical point it may be questioned whether the process ol “turning inside out”
is feasible for Eqs (10-7) and (10-8), ic, whether they can be solved for «; and g,
respectively. The question hinges on whether the equalions in each sel are independent, for
otherwise they are obviously not sufficient to determine the n independent quantities ¢, or
g; as the case may be. To simplily the notation, let S, symbolize members ol the set of
partial derivatives of S with respect to a;, so that Eq. (10-8) is represented by fi = S,. That
the derivatives S, in (10-8) form independent functions of the ¢'s follows ditectly [rom the
nature of a complete solution to the Hamilton—-Jacobi equation; indeed this is what we
mean by saying the n constants of integration are independent. Consequently the
Jacobian of S, with respect to g; cannot vanish. Since the order of differentiation is
immaterial, this is equivalent to saying that the Jacobian ol Sg with respect to o; cannot
vanish, which proves the independence of Egs. (10-7).
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Further insight into the physical significance of S is furnished by an
examination ofits total time derivative, which can be computed from the formula

ds oS, N oS

—_ = . —,

dt  og, i o
since the P’s are constant in time. By Eqgs. (10-7) and (10-3) this relation can also
be written

dsS .
E:PKI.'“H:L’ (10-12)

so that Hamilton’s principal function differs at most {rom the indefinite time
integral of the Lagrangian only by a constant:

S = der + constant. (10-13)

Now, Hamilton’s principle is a statement about the definite integral of L, and
from it we obtained the solution of the problem via the Lagrange equations. Here
the same actjon integral, in an indefinite form, furnishes another way of solving
the problem. In actual calculations the result expressed by Eq. (10-13) is of no
help, because one cannot integrate the Lagrangian with respect to time until ¢,
and p; are known as functions of time, i.e., until the problem is solved.*

10-2 THE HARMONIC OSCILLATOR PROBLEM AS AN
EXAMPLE OF THE HAMILTON-JACOBI METHOD

To illustrate the Hamilton-Jacobi technique for solving the motion of
mechanical systems we shall work out in detail the simple problem of a one-
dimensional harmonic oscillator. The Hamiltonian is

1 2 2
H=—(p>+ m*w’q?) = E, (10-14)
2m

where

k ’
= \/—‘ (10-15)
"

* Historically the recognition by Hamilton that the time integral of L is a special solution
of a partial differential equation came before it was seen how the Hamilton—-Jacobi
equation can furnish the solution (o a mechanical problem. It was Jacobi who realized that
the converse was true, that by the techniques of canonical transformations any complete
solution of the Hamiltonian—Jacobi equation could be used to describe the motion of the
system.




