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CHAPTER 2

Statistical Mechanics and Molecular Distribution
Functions

‘_;;-_This chapter is devoted to a brief summary of the principles of classical
statistical mechanics, to a discussion of the link between statistical
" mechanics and thermodynamics, and to the definitions of a variety of
_equilibrium and time-dependent distribution functions. It also establishes
“much of the notation that is used in later parts of the book.

21 THE LIOUVILLE EQUATION AND THE BBGKY HIERARCHY

' Consider an isolated, macroscopic system consisting of N identical particles,
each of which has three, translational degrees of freedom. The dynamical
state of the system at a given time is completely specified by the 3N
coordinates v~ ={r,,...,ry} and 3N momenta p"” ={py,...,pn} of the
b particles, The values of these variables define a phase point in a 6ON-
'~ dimensional phase space. Let 9 (™, p") be the hamiltonian of the system,
* which we write in the form

, 1 N
B (e, pM) =5 T e P V™) (2.1.1)

E‘;*: where m is the particle mass and Vy (r™) is the total potential energy. Then

g.fq.—l'_-zci.‘:"i‘ i -

~ the motion of the phase point along its phase trajectory is determined by

o Hamilton’s equations:

i L (2.1.2)
.P'l i ap. 1.

' o

pi= (2.1.3)
; ar;

i, ‘:her?: .i= 1,..., N. These equations are to be solved subject to 6N initial
3 conditions on the coordinates and momenta.
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14 STATISTICAL MECHANICS AND MOLECULAR DISTRIBUTION

The aim of equilibrium statistical mechanics is to calculate observable
properties of the system either as averages over a phase-space trajectory
(the method of Boltzmann) or as averages over an ensemble of systems,
each of which is a replica of the system of interest (the method of Gibbs).
The main features of the two methods are discussed in later sections of this
chapter. For the present, it is sufficient to recall that in Gibbs’ formulation

_ of statistical mechanics the distribution of phase points of the ensemble is

described by a phase-space probability g?gr_rs{f__}{__}_'f(j\L(rN, p"; t); the quantity
FM drN dp" is the probability that at time ¢ the physical system is in a

" microscopic state represented by a phase point lying in the infinitesimal,

6 N-dimensional phase-space element dr™ dp”. Given a complete knowl-
edge of the probability density, it would be possible to calculate the average
value of any function of the coordinates and momenta.

The time evolution of the phase-space probability density is governed by
the Liouville equation. The latter is the 6 N-dimensional analogue of the
equation of continuity of an incompressible fluid; it describes the fact that
phase points of the ensemble are neither created nor destroyed as time
evolves. The Liouville equation can be written in compact form as

af(N)
at

={%n, [} (2.1.4)
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where {A, B} denotes the Poisson bracket: 0
i (aA 3B 9A @)

is: (2.1.5)
ar; ap; 9pi I

{A,B}= Y

i=1

Another convenient form is obtained by introducing the Liouville operator
£, defined as )

=N, } (2.1.6)
Equation (2.1.4) then becomes
d (N)
fat =—igf ™ (2.1.7)

the formal solution to which is
FEN, pN; 1) =exp (—iL)f NN, p"; 0) (2.1.8)

The time dependence of an arbitrary dynamical variable, A say, can be
represented in a manner similar to (2.1.7). Any such variable is a function
of the phase-space coordinates ¥, p”" and changes in A are associated
solely with changes in the independent variables. Thus

85 (B e, 0800
or; dt op; dt

dt¢ N i=%

e

(2.19)
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If we substitute from Hamilton’s equations (2.1.2) and (2.1.3) and use the
definition (2.1.6), Eqn (2.1.9) becomes

dA
—=i%A 2.1.10
ar ( )
This has the formal solution
A(t)=exp (i£1)A(0) (2.1.11)

The description of the system that is provided by the full phase-space
probability density is for many purposes unnecessarily detailed. If we are
interested only in the behaviour of a subset of particles of size n, say, the
unwanted information can be eliminated by integrating f™’ over the coor-
dinates and momenta of the remaining (N —n) particles. We therefore
define a reduced phase-space distribution function f(r", p"; ¢) for n < N

by

N!
f(")(l'", P"; t) =m jj f(N)(l'N, pN; t) dr(N—n) dp(N_"), n<N
T(21.12)

where we use the notationr"={r;,...,r,}, ' " ={r,.y,...,rn}, etc. The
meaning of f"(r",p"; t) is that f dr" dp" is N!/(N—n)! times the
probability of finding any subset of n particles in the reduced phase-space
element dr” dp” at time ¢, irrespective of the coordinates and momenta of
the remaining particles; the factor N'!/(N —n)! is the number of ways of
choosing n particles from N.

The equations of motion of the reduced distribution functions are much
more compllcated in form than the Liouville equation. Let us suppose that
the total force acting on particle i is the sum of an external force X; and
of pair forces F;; due to other particles j, with F,, 70 Then the Liouville

equation can-be written as _:i § %0 1 (= o - _]: )
o { (] 3 o 1 ’
r B [ [ .

af™ N af™ N af (™) N 'a' Y™
Yty gLy x Y sp, L

i (2.1.13)
ar - om = ar; oy op; i ap;

We now multiply through by N!/(N —n)! and integrate over 3(N —n)
coordinates and momenta. By employing the definition (2.1.12), and exploit-
ing the symmetry of f™? with respect to interchange of particle labels and

the fact that ™ vanishes as p;~> £ 00 or when r; lies outside the volume
occupied by the system, we find that
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F

af(")_i_i R af‘") n Bf(")

; + X;-
at m i§1 R T; |Z op;
N f(N) -n -n
n af(") N| n J.J af(N)

=—YYF,; ~— | drtN=" dpN-m

¢ 'h'l ; ? i ap; (N n) ! lzl J §+1 Y ap: ' p

% n 8f(") n (n+1)
= :‘ZZ F-‘j'—_ Z JJ Fi,n+l ’ f dr,., dpn+l (2-1-14)
N U op;  i= op;

Thus thé behaviour of £ is linked to that of f/"*" by the formula

{ i=1[ pi: 6%+(x + Z F, ) i:l}f(")(r"’ " 1)

:‘i JJ.F,.,,H-—a—f("H)(r"“, ") drgy dpasy (2.1.15)
i=1

The set of equations for n=1, .. N 1 was first derived by Yvon (1935)
and is known as the BBGKY h1erarchy (Kirkwood, 1935; Bogolyubov,
1946, Born and Green, 1949).
0 Equation (2.1.15) is not immediately useful, because it expresses one
unknown function, £, in terms of another, f"*: at some stage an
: i approximation must be made that closes the system of equations. The most
important case in practice is that obtained by setting n=1, i.e.

SRU o 1 4 a)
: —— +X, - — )/ Yry, pys
e 2 : (Ic?f m | i 1 D, AU 1))

s E
Mgy = _JJ Fip- ép— 21, p1, 12, py; 1) dra dp, (2.1.16)
i 1 - 1

.:u_:

M:

("  The quantity /" dr, dp, is N times the probability of finding a particle of
Al the system in the six-dimensional phase element dr,dp, at time i
W f® dr, dr, dp, dp, is N(N —1) times the probability of finding a particle
in the phase element dr, dp, and, simultaneously, another particle in the
phase element dr, dp,.
Much effort has been devoted to finding approximate solutions to the
BBGKY hierarchy on the basis of expressions that relate @ to £, The
resulting kinetic equations are rarely appropriate for the study of liquids,
since they mostly treat the pair correlations in a very crude way. The simplest
approximation is to ignore the pair correlations altogether by writing

20, p, 1,05 =1, p; OF O, 95 1) (2.1.17)




