Physics 331

Advanced Classical Mechanics

Problem E

Derive the appropriate Euler-Lagrange equation for the case where the integral S has the form

$$
S=\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), y^{\prime \prime}(x), x\right) d x
$$

that is, where the integrand can depend on $y^{\prime \prime}$ as well as y and y^{\prime}. The values of y and y^{\prime} are specified at the end points x_{1} and x_{2}. This means the variation of the path, $\eta(x)$, must satisfy all of

$$
\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0, \quad \text { and } \quad \eta^{\prime}\left(x_{1}\right)=\eta^{\prime}\left(x_{2}\right)=0
$$

