Physics 331

Advanced Classical Mechanics

Problem H

Consider a tennis racket to be a flat, two-dimensional shape. The normal to the plane of the racket is a principal direction, which we will take to be $\hat{\mathbf{e}}_{1}$. The direction along the handle is another principal direction, which we take to be $\hat{\mathbf{e}}_{2}$, and finally, the direction in the plane of the racket perpendicular to the handle is $\hat{\mathbf{e}}_{3}$.
(a) Make a sketch showing these principal directions on the racket, with the origin at the center of mass.
(b) For a real tennis racket, the moment of inertia values are typically $\lambda_{1}=36.5 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, $\lambda_{2}=1.5 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, and $\lambda_{3}=35.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. (Notice that $\lambda_{1}=\lambda_{2}+\lambda_{3}$.) Consider flipping the racket about the $\hat{\mathbf{e}}_{3}$ axis, rotating it with frequency ω_{3}. The initial rotation will typically include some tiny amount of non-zero ω_{1} and ω_{2} as well.
By what factor will the initial ω_{1} value increase in the time it takes for the racket to complete one oscillation about the $\hat{\mathbf{e}}_{3}$ axis? Comment on your result.

