Driven Damped Pendulum

$$
\begin{equation*}
\ddot{\phi}+2 \beta \dot{\phi}+\omega_{0}^{2} \sin \phi=\gamma \omega_{0}^{2} \cos \left(\omega_{\mathrm{D}} t\right) \tag{1}
\end{equation*}
$$

Goal: $\phi(t)$, phase-space plots, Poincaré plots
We rewrite Eq. (1) as two DEs of first order for $\phi(t)$ and $\omega(t)$:

$$
\begin{align*}
& \dot{\phi}(t)=\omega(t) \tag{2}\\
& \dot{\omega}(t)=2 \beta \omega(t)+\omega_{0}^{2} \sin (\phi(t))=\gamma \omega_{0}^{2} \cos \left(\omega_{\mathrm{D}} t\right) \tag{3}
\end{align*}
$$

Use the same parameters as Taylor in Chapter 12:
$\omega_{\mathrm{D}}=2 \pi, \omega_{0}=1.5 \omega_{\mathrm{D}}, \beta=\omega_{0} / 4, \phi(0)=-\pi / 2, \dot{\phi}(0)=0$
Copy the notebook "Sept12_short.nb" from my public space (kvollmay \rightarrow public \rightarrow phys331 \rightarrow Sept12_short.nb) into your public or private space. Save your version of the notebook frequently during this lab.

1. Plot $\phi(t)$ for times $0 \leq t \leq 10$ and $50 \leq t \leq 70$
(i) $\gamma=1.06$ (already in notebook)
(ii) $\gamma=1.078$
(iii) $\gamma=1.081$
(iv) $\gamma=1.24$

How does this fit with our table from last class?
2. Make phase-space plots and interpret your results for
(i) $\gamma=1.06$ for $0 \leq t \leq 10$ and $60 \leq t \leq 70$
(ii) $\gamma=1.078$ for $60 \leq t \leq 70$
(iii) $\gamma=1.081$ for $60 \leq t \leq 70$
(iv) $\gamma=1.24$ for $60 \leq t \leq 70$

Hint: Use ParametricPlot. In case the size ratio is too narrow use AspectRatio \rightarrow Full.
3. Make Poincaré section plots for
(i) $\gamma=1.078$ (already done in notebook)
(iii) $\gamma=1.081$
(iv) $\gamma=1.24$

What is the relation between your results of $1 ., 2$. and $3 . ?$

