Driven Damped Pendulum

$$\ddot{\phi} + 2\beta\dot{\phi} + \omega_0^2 \sin\phi = \gamma \omega_0^2 \cos(\omega_{\rm D} t) \tag{1}$$

Goal: $\phi(t)$, phase-space plots, Poincaré plots

We rewrite Eq. (1) as two DEs of first order for $\phi(t)$ and $\omega(t)$:

$$\dot{\phi}(t) = \omega(t) \tag{2}$$

$$\dot{\omega}(t) + 2\beta\omega(t) + \omega_0^2 \sin(\phi(t)) = \gamma \omega_0^2 \cos(\omega_{\rm D} t) \tag{3}$$

Use the same parameters as Taylor in Chapter 12: $\omega_{\rm D} = 2\pi, \, \omega_0 = 1.5\omega_{\rm D}, \, \beta = \omega_0/4, \, \phi(0) = -\pi/2, \, \dot{\phi}(0) = 0$

Copy the notebook "Sept12_short.nb" from my public space (kvollmay \rightarrow public \rightarrow phys331 \rightarrow Sept12_short.nb) into your public or private space. Save your version of the notebook frequently during this lab.

1. Plot $\phi(t)$ for times $0 \le t \le 10$ and $50 \le t \le 70$

(i) $\gamma = 1.06$ (already in notebook) (ii) $\gamma = 1.078$ (iii) $\gamma = 1.081$ (iv) $\gamma = 1.24$ How does this fit with our table from last class?

2. Make phase-space plots and interpret your results for

(i) $\gamma = 1.06$ for $0 \le t \le 10$ and $60 \le t \le 70$ (ii) $\gamma = 1.078$ for $60 \le t \le 70$ (iii) $\gamma = 1.081$ for $60 \le t \le 70$ (iv) $\gamma = 1.24$ for $60 \le t \le 70$ nt: Use ParametricPlot In case the size ra

Hint: Use ParametricPlot. In case the size ratio is too narrow use AspectRatio \rightarrow Full.

3. Make Poincaré section plots for

(i) $\gamma = 1.078$ (already done in notebook) (iii) $\gamma = 1.081$ (iv) $\gamma = 1.24$ What is the relation between your results of 1.,2. and 3.?