Mathematica

We will use Mathematica in this course for solving some of the homework and reading assignments. As you already know from PHYS 221, Mathematica is a great tool for quick analysis. We will use it mainly to plot graphs and to solve differential equations which are only numerically accessible.

get started: logon \longrightarrow Windows Icon \longrightarrow Search for "mathematica" \longrightarrow Mathematica 9 \longrightarrow Notebook

help: • help button on right side of menue bar on top → HelpBrowser → type in keyword or if you know command then type that in

• ?Command or ??Command

set up command: Shift + Enter

functions: Function[.] (all functions start with capital letter)

lists: $\{\cdot, \cdot, \cdot, \text{ etc. }\}$ e.g. $l=\{3, 5, 6\}$

element of list: 1[[2]] (gives 5)

arithmetic: $+ - * / ^ e.g. 3^2 + 6 * 2$ (the * can be replaced with space)

comments: (*...*)

save session: File \longrightarrow SaveAs \longrightarrow

load session: File \longrightarrow Open \longrightarrow

reevaluate notebook: Evaluation \longrightarrow Evaluate Notebook

clear all variables: Evaluation \longrightarrow Quit Kernel \longrightarrow Local

print session: File \longrightarrow Print \longrightarrow

Mathematica Class Aug. 29, 2014

- 1. Type in the commands on the backside of this page and write next to them which task they do.
- 2a. Confirm that Eq.(2.21) is a solution to Eq.(2.19) by solving the
- DE $\frac{\mathrm{d}}{\mathrm{d}t}v(t) = -kv(t)$ with the initial condition $v(0) = v_0$.
- **2b.** Set $v_0 = 2.2$ and k = 5.6 and plot the resulting v(t) for $0 \le t \le 1.2$.
- **3a.** Numerically solve $y'(x) = 3.4\cos(y(x))$ for y(x) with initial condition y(0) = 0.5.
- **3b.** Plot the solution for $0 \le x \le 4.0$.
- **4a.** Given the DE y'' = -ky(x) what is y(x)?
- **4b.** Solve the DE of (4a) with k = 5.6 and y(0) = 3.2 and y'(0) = 0 and plot the solution for $0 \le x \le 3\pi$.

```
(* Mathematica Class Aug. 29, 2014 *)
(* problem 1.*)
N[Pi]
N[Pi, 12]
Solve[4 \times ^2 - 39 \times + 54 = 0, x]
NSolve[x^5-x^2+5 = 0, x]
Factor [x \wedge 3 + 4 \times \wedge 2 - 39 \times + 54]
a = \{3, 5, 6\}
b = \{1, 9, -2\}
c = \{a, b\}
MatrixForm[c]
Transpose[{a, b}]
f[t_{-}] := 0.05 Exp[t]
graph1 = Plot[f[t], {t, 0, 6.0}];
graph2 = ListPlot[Transpose[{a, b}], PlotStyle \rightarrow PointSize[.017]];
Show[graph1, graph2]
Clear[f, t, a]
D[7 t^3 - 5 t + Log[t], t]
Integrate[t^4, t]
DSolve[\{y'[x] = 2.6y[x], y[0] = 3.0\}, y[x], x] (* Solve DE *)
solution = DSolve[\{y'[x] = 2.6y[x], y[0] = 3.0\}, y[x], x]
f[x_{-}] = y[x] /. solution[[1, 1]]
Plot[f[x], {x, 0.0, 4.0}]
solution = NDSolve[\{y'[x] = 5.0 \sin[y[x]], y[0] = 3.0\}, y[x], \{x, 0, 4.0\}];
f[x_] = y[x] /. solution[[1]]; Plot[f[x], {x, 0, 4.0}]
```