Homework Assignment \#26

(due Oct. 23, 2020, 11pm, via gradescope)

1. Griffiths 5.4

Hint: make sketch, treat each wire separately, apply symmetry
2. Griffiths 5.5

Hint: $J=A / s$ so you need to determine A to get \vec{J}
3. Griffiths 5.6 (variation)
(a) Same as Griffith's problem 5.6a
(b) (Griffith's problem 5.6 b but for cylinder) A uniformly charged cylinder of radius R and length L and total charge Q is centered on the z-axis and origin. The symmetry axis of the cylinder is along the z-axis. The cylinder is spinning at constant angular velocity ω about the z-axis, i.e. about the symmetry axis of the cylinder. Find the current density \vec{J} at any point (s, ϕ, z) within the cylinder.

