Homework Assignment \#30

(due Nov. 3, 2020, 11pm, via gradescope)

1. Griffiths 5.35

Hint: For part (b) use $\mathbf{B} \approx \mathbf{B}_{\text {dip }}$
2. Griffiths 5.36

Hint: Use Eq. (5.37)
3. Griffiths 5.41 (Hall Effect !)
4. Additional Problem:

For the rectangular current loop sketeched below :
The loop has horizontal length L_{1} and vertical length L_{2}, that is in the range $-L_{1} / 2 \leq x \leq$ $+L_{1} / 2$ and $-L_{2} / 2 \leq y \leq+L_{2} / 2$.
(a) Determine \vec{m}.
(b) Put this current loop into the \mathbf{B}-field

$$
\mathbf{B}=3 \hat{\mathbf{x}}+4 \hat{\mathbf{y}}+13 x \hat{\mathbf{z}}
$$

(bi) Determine \mathbf{N} using your result from part (a).
(bii) Determine $\mathbf{F}_{\text {dip }}$ on the loop.

