Homework Assignment \#33

(due Nov. 9, 2020, 11pm, via gradescope)

1. Griffiths 6.15

Hints: Follow the hints provided in the problem statement, including to use Eq. (3.65). The hint to use Eq. (6.24) corresponds to

$$
\begin{aligned}
& H_{\text {above }}^{\perp}-H_{\text {below }}^{\perp}=-\left(M_{\text {above }}^{\perp}-M_{\text {below }}^{\perp}\right) \\
& H_{\text {outside }}^{\perp}-H_{\text {inside }}^{\perp}=\left(M_{\text {inside }}^{\perp}-M_{\text {outside }}^{\perp}\right) \\
& H_{\text {outside }}^{\perp}-H_{\text {inside }}^{\perp}=M_{\text {inside }}^{\perp} \\
&-\frac{\left.\partial W_{\text {outside }}\right|_{r=R}+\left.\frac{\partial W_{\text {inside }}}{\partial r}\right|_{r=R}}{}=M_{\text {inside }}^{\perp}=M \hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=M \cos (\theta)
\end{aligned}
$$

where the left side of the last line followed from $\mathbf{H}=-\vec{\nabla} W$ in spherical coordinates.
To get a second boundary condition we use that

$$
W(\mathbf{b})-W(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{b}} \vec{\nabla} W \cdot \mathrm{~d} \vec{l}=-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{H} \cdot \mathrm{d} \vec{l}
$$

from which follows for $|\mathbf{a}-\mathbf{b}| \rightarrow 0$ that $W(\mathbf{b})-W(\mathbf{a}) \rightarrow 0$, therefore

$$
W_{\text {inside }}(r, \theta)=W_{\text {outside }}(r, \theta)
$$

All this tells you that you may use the boundary conditions
(i) $\quad W_{\text {inside }}(r, \theta)=W_{\text {outside }}(r, \theta)$
(ii) $\quad-\left.\frac{\partial W_{\text {outside }}}{\partial r}\right|_{r=R}+\left.\frac{\partial W_{\text {inside }}}{\partial r}\right|_{r=R}=M_{\text {inside }}^{\perp}=M \hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=M \cos (\theta)$

2. Additional Problem I:

For a system with cartesian coordinate symmetry, the solution for V has been narrowed down to

$$
V(x, y)=\sum_{n=1}^{\infty} C_{n} \exp \left(-\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi}{a} y\right)
$$

(a) What are the basis vectors?
(b) For the boundary condition

$$
V(x=5, y)=3 \sin \left(\frac{2 \pi}{a} y\right)-9 \sin \left(\frac{7 \pi}{a} y\right)
$$

Determine C_{n} for all n.
(c) For the different boundary condition (so ignore part (b))

$$
V(x=5, y)=8
$$

write an expression for C_{n}.

