Homework Assignment #6

(due Sept. 7, 2022, at beginning of class)

- 1. Griffiths 1.45
- 2. Griffiths 1.48
- 3. In homework #2.3 and #2.4 you determined the divergence and the curl for
 - $\mathbf{v}_a = y^2 \,\hat{\mathbf{x}} + (2xy + z^2) \,\hat{\mathbf{y}} + 2yz \,\hat{\mathbf{z}}$
 - $\mathbf{v}_b = -xy\,\hat{\mathbf{x}} + 2yz\,\hat{\mathbf{y}} + 7xz\,\hat{\mathbf{z}}$
 - $\mathbf{v}_c = x^2 \,\hat{\mathbf{x}} + 3xz^2 \,\hat{\mathbf{y}} 2xz \,\hat{\mathbf{z}}$
 - (i) Which of these vectors can be expressed as $\mathbf{v} = \nabla T$? For the corresponding \mathbf{v} find T.
 - (ii) Which of these vectors can be expressed as $\nabla \times \mathbf{A}$? For the corresponding \mathbf{v} find \mathbf{A} . Hint: Choose one of the \mathbf{A} -components to be zero, for example $A_y = 0$. To not give away, which of the vectors above you will use, let me explain the next step with some other vector $\mathbf{v}_d = 3xy^2 \hat{\mathbf{x}} + (y^2 - y^3) \hat{\mathbf{y}} + 2yz \hat{\mathbf{z}}$. In this case choosing $A_y = 0$ means $v_{d,x} = (\nabla \times \mathbf{A})_x = \left(\frac{\partial}{\partial y}A_z - \frac{\partial}{\partial z}A_y\right) = \frac{\partial}{\partial y}A_z = 3xy^2$ and therefore $A_z = xy^3 + f(x, z)$, where f(x, z) indicates a function which may depend on x and/or z, but not on y. Similarly you use $v_{d,y}$ and $v_{d,z}$.