Homework Assignment \#6

(due Sept. 7, 2022, at beginning of class)

1. Griffiths 1.45
2. Griffiths 1.48
3. In homework $\# 2.3$ and $\# 2.4$ you determined the divergence and the curl for

- $\mathbf{v}_{a}=y^{2} \hat{\mathbf{x}}+\left(2 x y+z^{2}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}$
- $\mathbf{v}_{b}=-x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+7 x z \hat{\mathbf{z}}$
- $\mathbf{v}_{c}=x^{2} \hat{\mathbf{x}}+3 x z^{2} \hat{\mathbf{y}}-2 x z \hat{\mathbf{z}}$
(i) Which of these vectors can be expressed as $\mathbf{v}=\nabla T$? For the corresponding \mathbf{v} find T.
(ii) Which of these vectors can be expressed as $\nabla \times \mathbf{A}$? For the corresponding \mathbf{v} find \mathbf{A}.

Hint: Choose one of the A-components to be zero, for example $A_{y}=0$. To not give away, which of the vectors above you will use, let me explain the next step with some other vector $\mathbf{v}_{d}=3 x y^{2} \hat{\mathbf{x}}+\left(y^{2}-y^{3}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}$. In this case choosing $A_{y}=0$ means $v_{d, x}=(\nabla \times \mathbf{A})_{x}=\left(\frac{\partial}{\partial y} A_{z}-\frac{\partial}{\partial z} A_{y}\right)=\frac{\partial}{\partial y} A_{z}=3 x y^{2}$ and therefore $A_{z}=x y^{3}+f(x, z)$, where $f(x, z)$ indicates a function which may depend on x and/or z, but not on y. Similarly you use $v_{d, y}$ and $v_{d, z}$.

