Homework Assignment #27

(due Nov 9, 2022, at the beginning of class)

1. Griffiths 5.23

Hint: To determine \vec{A} you will need $\int \frac{\mathrm{d}x}{\sqrt{a^2+x^2}} = \ln(x+\sqrt{a^2+x^2})$ To determine \vec{B} use cylindrical coordinates. To get to Eq. (5.37) you can use that $(z_2+\sqrt{s^2+z_2^2})(z_2-\sqrt{s^2+z_2^2})=z_2^2-(s^2+z_2^2)=-s^2$. Therefore for each term of your expression, multiply and devide by the necessary factor.

2. Griffiths 5.24

Hint: First determine \vec{B} and then \vec{J}

3. Griffiths 5.26

Hint: We cannot use Eq.(5.66) because the current is not zero at infinity. Instead make the Ansatz $\vec{A} = A(s) \hat{\mathbf{z}}$. Determine first \vec{B} and then determine A(s) needed to get \vec{B} .