Homework Assignment \#27

(due Nov 9, 2022, at the beginning of class)

1. Griffiths 5.23

Hint: To determine \vec{A} you will need $\int \frac{\mathrm{d} x}{\sqrt{a^{2}+x^{2}}}=\ln \left(x+\sqrt{a^{2}+x^{2}}\right)$ To determine \vec{B} use cylindrical coordinates. To get to Eq. (5.37) you can use that $\left(z_{2}+\sqrt{s^{2}+z_{2}^{2}}\right)\left(z_{2}-\sqrt{s^{2}+z_{2}^{2}}\right)=$ $z_{2}^{2}-\left(s^{2}+z_{2}^{2}\right)=-s^{2}$. Therefore for each term of your expression, multiply and devide by the necessary factor.
2. Griffiths 5.24

Hint: First determine \vec{B} and then \vec{J}
3. Griffiths 5.26

Hint: We cannot use Eq.(5.66) because the current is not zero at infinity. Instead make the Ansatz $\vec{A}=A(s) \hat{\mathbf{z}}$. Determine first \vec{B} and then determine $A(s)$ needed to get \vec{B}.

