Homework Assignment \#29

(due Nov 14, 2022, at the beginning of class)

1. Griffiths 6.7

Hint: Notice that you obtain for \vec{K}_{b} the same expression you get for the surface current density of a solenoid.
2. A long circular cylinder of radius R carries a magnetization $\mathbf{M}=k s^{5} \hat{\boldsymbol{\phi}}$ parallel to its axis. Determine the magnetic field \mathbf{B} (due to \mathbf{M}) inside and outside the cylinder.
Hint: First determine \vec{J}_{b} and \vec{K}_{b}, and then use Ampère's Law to determine \vec{B}. You get contributions due to both \vec{J}_{b} as well as \vec{K}_{b}.

