IN-CLASS WORK: MOLECULAR DYNAMICS SIMULATIONS

6. Driven Damped Pendulum Intro & Trajectory

6b. At the end of last class we ended up with the essential equation for the simulation of the driven, damped pendulum to be

$$\frac{d^2\theta}{dt^2} = \tilde{A}\cos\left(\tilde{\omega}_{\rm D}t\right) - \sin(\theta) - \tilde{\gamma}\frac{d\theta}{dt}$$
(3)

where we replaced \tilde{t} by t simply for the convenience of notation. In the computer simulation we solve this equation numerically, i.e. our goal is to determine $\theta(t)$ and $\dot{\theta}(t)$.

Using the Euler method as written on the white board, program this driven damped pendulum. Use

$$\theta_0 = -2.5$$
 $\omega_0 = 0.0$ $A = 0.95$ $\tilde{\omega}_D = 2.0/3.0$ $\tilde{\gamma} = 0.5$ $\Delta t = 0.01$ $n_{\text{max}} = 10000$

Please note that these parameters are different than the inclass-handout from last class. Use the parameters given here.

You may use the solution to our March 9 classwork ~kvollmay/share.dir/inclass.dir/md4.py

Print only every 10th MD-step $t, \theta(t), \omega(t)$. (In the following I will call this nprint=10.) Look at $\theta(t)$ and $\omega(t)$. If your data are in the file out6.dat you can do this with xmgrace -block out6.dat -bxy 1:2 -bxy 1:3

6c What is the energy of the driven damped pendulum? Since we chose as time unit $1/\omega_0^2$ and as torque unit $I\omega_0^2$ our energy unit is also $I\omega_0^2$ and this means that in the program you want to determine $\tilde{E} = \frac{E}{I\omega_0^2}$. Please get me when you have your expression for \tilde{E} . Then add the determination of \tilde{E} to your program and print $\tilde{E}(\tilde{t})$ and look at your results with xmgrace. Get me also when you have your result. We will discuss the interpretation of your result and I will show you a few tools with xmgrace.

7. Period Doubling (if time)

Next we will vary \tilde{A} and will observe how \tilde{A} influences $\theta(t)$ and $\omega(t)$. For this task and also for next class, we will use a special time step Δt . We will use

$$\Delta t = \frac{2\pi}{\tilde{\omega}_{\rm D} N_{\rm dt}}$$

Please ask when you get to this, I will briefly explain why we choose Δt this way. Use $N_{\rm dt} = 200$ and increase nmax to 100000.

- **7a.** Look at $\theta(t), \omega(t)$ and E(t) for $\tilde{A} = 1.049$.
- **7b.** Look at $\theta(t), \omega(t)$ and E(t) for $\tilde{A} = 1.053$.
- **7c.** Look at $\theta(t), \omega(t)$ and E(t) for $\tilde{A} = 1.054$.

7d. Look at $\theta(t), \omega(t)$ and E(t) for $\tilde{A} = 1.07$.

7e. Get me when you got all results for 7a-7d. (Get them all on the screen, so that your class members can see them also.)

8. Poincaré Plot (if time)

8a. Incorporate periodic boundary conditions for θ , i.e. ensure that thetanew satisfies

$$-\pi < \theta \le \pi$$

8b. To get $\omega(\theta)$ measured in phase with $T_{\rm D}$ determine Δt as $\Delta t = (2\pi/\tilde{\omega}_{\rm D})/n_{\rm print}$. Use $n_{\rm print} = 200$ and do 100000 MD-steps. (So set $n_{\rm print} = N_{\rm dt}$. To ensure to not plot the transient plot only after 20000 MD-steps. Look at the Poincaré plot $\omega(\theta)$ for the \tilde{A} values of the above 7a-7d. Get me, when you have the results.