In-Class Work: Molecular Dynamics Simulations

6. Driven Damped Pendulum Intro \& Trajectory

$\mathbf{6 b}$. At the end of last class we ended up with the essential equation for the simulation of the driven, damped pendulum to be

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=\tilde{A} \cos \left(\tilde{\omega}_{\mathrm{D}} t\right)-\sin (\theta)-\tilde{\gamma} \frac{d \theta}{d t} \tag{3}
\end{equation*}
$$

where we replaced \tilde{t} by t simply for the convenience of notation. In the computer simulation we solve this equation numerically, i.e. our goal is to determine $\theta(t)$ and $\dot{\theta}(t)$.
Using the Euler method as written on the white board, program this driven damped pendulum. Use

$$
\theta_{0}=-2.5 \quad \omega_{0}=0.0 \quad \tilde{A}=0.95 \quad \tilde{\omega}_{\mathrm{D}}=2.0 / 3.0 \quad \tilde{\gamma}=0.5 \quad \Delta t=0.01 \quad n_{\max }=10000
$$

Please note that these parameters are different than the inclass-handout from last class. Use the parameters given here.
You may use the solution to our March 9 classwork ~kvollmay/share.dir/inclass.dir/md4.py
Print only every 10th MD-step $t, \theta(t), \omega(t)$. (In the following I will call this nprint=10.) Look at $\theta(t)$ and $\omega(t)$. If your data are in the file out6. dat you can do this with xmgrace -block out6.dat -bxy 1:2 -bxy 1:3
$\mathbf{6 c}$ What is the energy of the driven damped pendulum? Since we chose as time unit $1 / \omega_{0}^{2}$ and as torque unit $I \omega_{0}^{2}$ our energy unit is also $I \omega_{0}^{2}$ and this means that in the program you want to determine $\tilde{E}=\frac{E}{I \omega_{0}^{2}}$. Please get me when you have your expression for \tilde{E}. Then add the determination of \tilde{E} to your program and print $\tilde{E}(\tilde{t})$ and look at your results with xmgrace. Get me also when you have your result. We will discuss the interpretation of your result and I will show you a few tools with xmgrace.

7. Period Doubling (if time)

Next we will vary \tilde{A} and will observe how \tilde{A} influences $\theta(t)$ and $\omega(t)$. For this task and also for next class, we will use a special time step Δt. We will use

$$
\Delta t=\frac{2 \pi}{\tilde{\omega}_{\mathrm{D}} N_{\mathrm{dt}}}
$$

Please ask when you get to this, I will briefly explain why we choose Δt this way. Use $N_{\mathrm{dt}}=200$ and increase nmax to 100000 .
7a. Look at $\theta(t), \omega(t)$ and $E(t)$ for $\tilde{A}=1.049$.
7b. Look at $\theta(t), \omega(t)$ and $E(t)$ for $\tilde{A}=1.053$.
7c. Look at $\theta(t), \omega(t)$ and $E(t)$ for $\tilde{A}=1.054$.

7d. Look at $\theta(t), \omega(t)$ and $E(t)$ for $\tilde{A}=1.07$.
7e. Get me when you got all results for 7a-7d. (Get them all on the screen, so that your class members can see them also.)
8. Poincaré Plot (if time)

8a. Incorporate periodic boundary conditions for θ, i.e. ensure that thetanew satisfies

$$
-\pi<\theta \leq \pi
$$

8b. To get $\omega(\theta)$ measured in phase with T_{D} determine Δt as $\Delta t=\left(2 \pi / \tilde{\omega}_{\mathrm{D}}\right) / n_{\text {print }}$. Use $n_{\text {print }}=200$ and do 100000 MD-steps. (So set $n_{\text {print }}=N_{\mathrm{dt}}$. To ensure to not plot the transient plot only after 20000 MD-steps. Look at the Poincaré plot $\omega(\theta)$ for the \tilde{A} values of the above 7a-7d. Get me, when you have the results.

