In-Class Work: Molecular Dynamics Simulations

1. Numerical Integration

I will first give some short introduction.
1a. For $f(t, y)=A x$ write a program which uses the Euler-step for integration (and therefore use the flowchart on the white board) to integrate

$$
\frac{d x}{d t}=f(t, x)=A x
$$

Use $A=0.3, t_{0}=0.0, x_{0}=0.6, \Delta t=0.2, n_{\max }=100$ (that means $t_{\max }=20.0$). Print $t, x(t)$ for every time-step t. Save the data in a file, e.g. out1sim0.2.dat. To help you with the writing the data into a file of specified name, you may start with copying the following program into your working directory:
~kvollmay/share.dir/inclass.dir/md1_start.py
1b. What do you expect for $x(t)$ (we can solve the DE analytically).
1c. Add to your program that the exact solution for $t, x(t)$ is printed for every time-step into another file, e.g. named out1theory. dat Look at the comparison of the numerical solution and the theoretical solution with xmgrace out1theory.dat out1sim0.2.dat.

1d. Now rerun the program for $\Delta t=0.1$ and adjust $n_{\max }$ to get the same $t_{\max }=$ 20.0 and print into another file, e.g. out1sim0.1.dat. Then rerun the program again this time for $\Delta t=0.01$ and $n_{\max }$ again adjusted. Look at your data with xmgrace out1theory.dat out1sim*.dat. When you got this, please get me, I will show you a few tools with xmgrace I summarize here in footnote. ${ }^{3}$

2. Newton's Second Law

2a. Make sure to get me, before you continue. What are the Euler step updates for $x(t+\Delta t)$ and for $v_{x}(t+\Delta t)$?
2b. Numerically integrate for $F_{x}^{\text {net }}=-m g$. Use $g=9.8, \Delta t=0.2, t_{\max }=20.0, x_{0}=$ $5.0, v_{x 0}=2.3$. Print into a file $t, x(t), v_{x}(t)$. As above, also determine the analytical solution and rerun the numerical solution also for $\Delta t=0.1$ and $\Delta t=0.01$. Look at your comparison as in 1d.

[^0]
3. Harmonic Oscillator \& Surprise

3b. Numerically integrate this time for the harmonic oscillator, so $F_{x}^{\text {net }}=-k x$. We can also analytically solve this equation. Let's choose $x_{0}=5.0, v_{0}=0.0$, then the theoretical solution is

$$
x(t)=5.0 \cos \left(\omega_{0} t\right) \quad v_{x}(t)=-5.0 \omega_{0} \sin \left(\omega_{0} t\right)
$$

where $\omega_{0}=\sqrt{(k / m)}$. So we know the period $T=2 \pi / \omega_{0}$. Let's choose $\Delta t=T / n_{\text {div }}$. Integrate $F_{x}^{\text {net }}=-k x$ for $k=m=1$ and for $n_{\text {div }}=100$ and do $n_{\max }=10 n_{\text {div }}$ MD steps. Print also the analytical solution and compare. Note: Before you update $x(t)$, you need to copy the value of $x(t)$ into a temporary variable for example xold=x only then you can update x and then v. For v you need to use xold. Try also with $n_{\text {div }}=1000$. What happens? Get me, when you have the results. You might also want to look at the total energy

$$
E_{\mathrm{tot}}=\frac{1}{2} k x^{2}+\frac{1}{2} m v_{x}^{2}
$$

as function of time, so $E_{\text {tot }}(t)$.

4. Euler-Cromer

Read in the Gould \& Tobochnik's book the first page of chapter 3. Change your program from 3b to use the Euler-Cromer step instead of the Euler step. Repeat the integration and compare again with the theoretical solution.

5. Integration Methods

If time is left, read in Newman's book pages 327 - 334 .

[^0]: ${ }^{3}$ To save xmgrace session: File \rightarrow Save as and in Selection entry give filename, for example md1dfig. xmgr To save eps-file File \rightarrow Print setup then change Postscript to EPS. In case you had previously used Save as the eps-filename is already suggested and then click Accept. To get the eps-file printed use File \rightarrow Print

