
February 19, 2019 PHYS 338 Spring 2019

In-Class Work: Fractal Growth

4. DLA: Random Walk If you had finished in last class to include the 2dim random walk
into the DLA program, you may continue with your working program. Otherwise, please start
today’s class with the solution program
~kvollmay/share.dir/inclass2019.dir/classfractal4.py

We will look at this program together at the beginning of class.

5. DLA: Distance

5a. We work next on step IV of the DLA rules, for which you need to keep track of the
distance r of your walker from the midpoint of the lattice. Copy classfractal4.py (or your
already working program from last class) and add to the program the determination of r .
Before you change the program, add this task to the flow chart, to know excactly where in
your program you need to determine r. (Hint: For

√
in python use in the header, as already

in the sample file, import scipy as sp and then for example
√
5 would be sp.sqrt(5)).

To check your program print for every random walk step x,y,LMID,r and check by hand that
you get the right distance from the midpoint of the lattice.

5b. Now replace the loop of 50 random steps with a while loop while walkstop == 0:.
(Note == instead of = .) Set walkstop = 0 before this while loop and set walkstop = 1, as
soon as r ≥ 2 ∗ Rmax. Initialize Rmax to Rmax = 3.0 and sp.random.seed(11). Run your
program and check that your stopping of the random walk works as intended.

6. Stick to Cluster

Next we will work on rule V, the sticking of a random walker particle to the cluster, if the
random walker is next to a cluster cell. We use “von Neumann neighbors”, which means a
neighbor cell up,down,left or right.
6a. Next add to your program of 5b. that whenever the random walker is next (left,
right, top, bottom) to a particle of the cluster then the random walk stops (walkstop up-
date). Use the flow chart to decide where to add the necessary lines. If you have kept the
print(x,y,LATMID,r) from 5a (and the same seed) then you can check that your program
is working right.

6b. Now add to your program of 6a that you also have an integer variable npart which is
initialized to be npart=1 and gets increased by one whenever a particle sticks to the cluster.
Also update lattice whenever a particle sticks. Whenever a particle sticks to the cluster,
you also need to check if RMAX has grown and if so, then you need to update RMAX. Add this
to your program.

7. Finish Program: Loop Over Particles

Now you are ready to finish your DLA program! Add to your program a while loop over
particles. Condition for this while loop are both that the wanted number of cluster particles
NPARTMAX has not yet been reached and that the radius for the start of the random walk
fits into the lattice. Use the flow chart of class to decide where to add this while-loop. Use
the constants LATSIZE=100, NPARTMAX=50. Comment out the printing of (x,y,LATMID,r),
but print the resulting lattice at the end (so after the particle-loop). In case you would like
not to print the complete lattice, you may use the following commands



plt.imshow(lattice[int(LATMID-RMAX-2):int(LATMID+RMAX+2),\

int(LATMID-RMAX-2):int(LATMID+RMAX+2)],interpolation=’nearest’)

plt.savefig(’frame7.pdf’)

8. Finished DLA program (if time)

So, now you have programmed the DLA model [T. A. Witten Jr, L. M. Sander, Phys. Rev.
Lett. 47, 1400 (1981)]! Next you will learn how the DLA-cluster can be analyzed, namely
you will measure the so called fractal dimension. You may compare your program with the
following program:
~kvollmay/share.dir/inclass2019.dir/classfractal8.py

9. Fractal Dimension of DLA Cluster (if time)

9a. I will give you an intro to a defintion for the fractal dimension.

9b. Now lets get ready to analyze the pattern of the DLA model. You will determine the
fractal dimension of one pattern using the method of checking squares of length b, as just
described in class.

To avoid having to run the DLA program again and again, let us first prepare one pattern,
which you then will analyze in 9c. Run the program
~kvollmay/share.dir/inclass.dir/classfractal8.py

This program makes the file bigDLAcluster.dat (and a nice pdf-file frame8.pdf just for
fun). (Or if you have your own finished DLA program, have a look at the last few lines of
classfractal8.py to see how to write the file bigDLAcluster.dat.) Ensure that you run
the program for LATSIZE=500 and for NPARTMAX=3000. This will take a while, but we have
to do this only once, because for the analysis we use bigDLAcluster.dat.

9c. Now you need a program which reads in the 224x224 matrix from your file
bigDLAcluster.dat. You may use for this task
~kvollmay/share.dir/inclass.dir/classfractal9start.py

To get the fractal dimension df we use the following relation.

ln(N) = ln(c) + df ∗ ln(b) (1)

where N is the number of occupied sites, c is some constant and b is the length of your square
for which you count the number of occupied sites. You see that Eq.(1) defines df and it tells
us that if we plot ln(N) as a function of ln(b) then we should get a line with slope df. So our
task is to get N and b. Add to your program that you count the number of occupied sites N
for a lattice of lenght b, where you center your lattice of lenght b around the midpoint of your
224 x 224 lattice. Loop over the length of your lattice and print out ln(N) as a function of
ln(b). Let’s say you do
classfractal9c.py > lnNoflnb.dat

Hint: ln(N) is in python sp.log(N)

9d. Next we fit a line to our data from 9c stored in file lnNoflnb.dat. For this we use gnuplot.
So type in the command line “gnuplot”. Then type “plot "lnNoflnb.dat"”. Define a
function f(x) by typing “f(x) = a*x + b”. Now fit your data within the xrange [2.0,4.5] to
a line by typing “fit [2.0:4.5] f(x) "lnNoflnb.dat" via a,b”. The resulting a is the
fractal dimension df. You can look at the data and fit with “plot "lnNoflnb.dat",f(x)”
Compare your fractal dimension with the expected value of 1.71


