In-Class Work: Mini-Project III

Today you will work in groups of three on assigned mini-projects (see below to which group and project you belong). All of you will do analysis using the Nagel-Schreckenberg traffic flow model.
We define the mean velocity at time t as

$$
\begin{equation*}
v_{\mathrm{av}}(t)=\frac{1}{N} \sum_{i=0}^{N-1} v_{i}(t) \tag{1}
\end{equation*}
$$

Mini-Project III. 1 (Lindsey, Kyle, Noah)

Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2021.dir/traffic10_miniIII1.py III 1a:
Look at this program and confirm that it determines $v_{\mathrm{av}}(t)$.
III 1b:
Run this program for PDEC=0.0, VMAX=4 and for PCAR=0.1 (and MAXTIMESTEPS=300). Look at the result.

III 1c:

Run this program also for the following $\operatorname{PCAR}=0.2,0.3,0.4,0.6,0.8$.
III 1d:
Make one figure $v_{\mathrm{av}}(t)$ with all investigated PCAR. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\mathrm{av}}(t)$ for PDEC=0.0 and all investigated PCAR. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your $\sim /$ share.dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

Mini-Project III. 2 (Bryant, Casey, Josh, Max)

Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2021.dir/traffic10_miniIII1.py

III 2a:

Look at this program and confirm that it determines $v_{\mathrm{av}}(t)$.

III 2b:

Run this program for PDEC=0.25, VMAX=4 and for PCAR=0.1 (and MAXTIMESTEPS=300). Look at the result.

III 2c:

Run this program also for the following $\operatorname{PCAR}=0.2,0.3,0.4,0.6,0.8$.
III 2d:
Make one figure $v_{\mathrm{av}}(t)$ with all investigated PCAR. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\mathrm{av}}(t)$ for PDEC=0.25 and all investigated PCAR. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your $\sim /$ share. dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

Mini-Project III. 3 (Justin, George, Liam, Jacky)
Copy into your working directory ~kvollmay/share.dir/inclass2021.dir/traffic11_miniIII3.py
III 3a: You will see from the previous groups that $\mathrm{v}_{\mathrm{av}}(t)$ equilibrates after some time to some value v_{eq} around which v_{av} fluctuates. Your group will determine the average of the long time limit of $v_{\mathrm{av}}(t)$ as function of c. Confirm that traffic11_miniIII3.py indeed determines

$$
\begin{equation*}
v_{\mathrm{eq}}(c)=\frac{1}{\left(t_{\mathrm{tot}}-t_{\mathrm{eq}}\right)} \sum_{t>t_{\mathrm{eq}}}^{t_{\mathrm{tot}}} v_{\mathrm{av}}(t) \tag{7}
\end{equation*}
$$

We now want to see how $v_{\text {eq }}$ depends on the concentration of cars

$$
\begin{equation*}
c=\text { nocars/double(ROADLENGTH) } \tag{8}
\end{equation*}
$$

There is no need to understand the theoretical values. I will explain them if there will be enough time in class.
III 3b:
Run this program for PDEC=0.0. This will take a few minutes. Look at the result.
III 3c:
Ensure to keep PDEC=0.0 (this is specific to your group) and run the program three times to get results for VMAX $=3$ and VMAX $=4$ and VMAX $=5$.

III 3d:

Make one figure $v_{\text {eq }}(c)$ with all investigated VMAX. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\text {eq }}(c)$ for PDEC=0 and all investigated VMAX. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your $\sim /$ share. dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

Mini-Project III. 4 (Ella, Mike, Weiru,Gavin)
Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2021.dir/traffic11_miniIII3.py
III 4a: You will see from the previous groups that $\mathrm{v}_{\mathrm{av}}(t)$ equilibrates after some time to some value v_{eq} around which v_{av} fluctuates. Your group will determine the average of the long time limit of $v_{\mathrm{av}}(t)$ as function of c. Confirm that traffic11_miniIII3. py indeed determines

$$
\begin{equation*}
v_{\mathrm{eq}}(c)=\frac{1}{\left(t_{\mathrm{tot}}-t_{\mathrm{eq}}\right)} \sum_{t>t_{\mathrm{eq}}}^{t_{\mathrm{tot}}} v_{\mathrm{av}}(t) \tag{9}
\end{equation*}
$$

We now want to see how $v_{\text {eq }}$ depends on the concentration of cars

$$
\begin{equation*}
c=\text { nocars/double(ROADLENGTH) } \tag{10}
\end{equation*}
$$

There is no need to understand the theoretical values. I will explain them only if there will be enough time in class.
III 4b:
Run this program for PDEC=0.25. Note that you will have to change this value. This will take a few minutes. Look at the result.

III 4c:

Ensure to keep $\mathrm{PDEC}=0.25$ (this is specific to your group) and run the program three times to get results for $\mathrm{VMAX}=3$ and $\mathrm{VMAX}=4$ and $\mathrm{VMAX}=5$.

III 4d:

Make one figure $v_{\text {eq }}(c)$ with all investigated VMAX. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\text {eq }}(c)$ for PDEC=0.25 and all investigated VMAX. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your ~/share.dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

