Universal Aging Dynamics of Silica Katharina Vollmayr-Lee (Bucknell University)

Ohio University, April 6, 2017

Acknowledgments:

H. E. Castillo, C. H. Gorman, R. Bjorkquist, L. M. Chambers

Introduction: Glass

Introduction: Glass

Introduction: Glass

[C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53 (1976)]

Dynamics:

Viscocity η as function of inverse temperature T

- slowing down of many decades
 very interesting dynamics
- large variety of glass formers
- strong and fragile glass formers Here: SiO₂ (strong glass former) Below: comparison with fragile glass former

System: Silica (SiO₂)

Special Properties:

- sand and window glass
- ▶ similar to water (H₂O):
 - rich phase diagram
 - density maximum

[S. Stoeffler and J. Arndt, Naturwissenschaften 56, 100 (1969)

Model: BKS Potential [B.W.H. van Beest *et al.*, PRL 64, 1955 (1990)]

$$\phi(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} e^{-B_{ij} r_{ij}} - \frac{C_{ij}}{r_{ij}^6}$$

112 Si & 224 O $\rho = 2.32 \text{ g/cm}^3$ $T_c = 3330 \text{ K}$

Molecular Dynamics Simulation

Newton's Equations:

$$\frac{d^2}{dt^2}\vec{r_i}(t) = \vec{a_i}(t) = \vec{F_i}(t)/m_i = -\vec{\nabla}_i U(t)/m_i = -\vec{\nabla}_i \sum_{j,k} \phi(\mathbf{r}_{jk})/m_i$$

Simulation Runs

Out of Equilibrium \longrightarrow Dynamics depends on Waiting Time $t_{\rm w}$ (Aging)

Outline: Universal Aging Dynamics of Silica

Universality:

▶ Here SiO₂, compare with fragile glass formers

Outline: Universal Aging Dynamics of Silica

Aging Dynamics (t_w - Dependence):

- Microscopic Single Particle Jumps
- Scaling of Dynamic Heterogeneities

Universality:

▶ Here SiO₂, compare with fragile glass formers

[PRL 2013,EPL 2015] [JCP 2016]

1. Microscopic: Jump Definition & Jump Statistics

[KVL, R. Bjorkquist, L.M. Chambers, PRL 110, 017801 (2013)] see also [KVL, J. Chem. Phys. 121, 4781 (2004)] jumps $\leftrightarrow \rightarrow$ defects [KVL & A. Zippelius, PRE 88, 052145 (2013)]

Jump Length Distribution

Distribution of Time in Cage $P(\Delta t_{\rm b})$: $t_{\rm w}$ varied

Number of Jumping Particles per Time

polymer; CTRW

[Helfferich et al., EPL 2015]

Summary for Single Particle Jumps

Aging Dynamics (t_w - Dependence):

► Microscopic Single Particle Jumps [PRL 2013,EPL 2015] → Only t_w -dependence: $N_p/\Delta t_w$ (not $P(\Delta R)$ and not $P(\Delta t_b)$)

Universality:

 Similar Single Particle Jump Dynamics for strong and fragile glass formers

Outline: Universal Aging Dynamics of Silica

Aging Dynamics (t_w - Dependence):

- Microscopic Single Particle Jumps
- Scaling of Dynamic Heterogeneities

[PRL 2013,EPL 2015] [JCP 2016]

Universality:

▶ Here SiO₂, compare with fragile glass formers

Scaling of Dynamic Heterogeneities

Previous Work:

- quantities χ and $P(f_{s,\mathbf{r}})$ depend on two times (t, t_{w})
- fragile glass formers and spin glasses
- (t, t_w) -dependence is governed by $C(t, t_w)$

[Castillo et al. 2002 -]

Universality:

Test here for strong glass former SiO₂ [KVL, Gorman, Castillo, JCP 144, 234510 (2016)] (JCP Editor's Choice: Paper & Talk)

Scaling of Dynamic Heterogeneities

Previous Work:

- quantities χ and $P(f_{s,\mathbf{r}})$ depend on two times (t, t_{w})
- fragile glass formers and spin glasses
- ▶ (t, t_w) -dependence is governed by $C(t, t_w) \longrightarrow \text{next slide}$

[Castillo et al. 2002 —]

Universality:

Test here for strong glass former SiO₂ [KVL, Gorman, Castillo, JCP 144, 234510 (2016)] (JCP Editor's Choice: Paper & Talk)

Global Incoherent Intermediate Scattering Function C

Global Incoherent Intermediate Scattering Function C

Relaxation Time τ_q

Dynamic Susceptibility χ

$$f_s^{\alpha}(t_{\rm w}, t_{\rm w} + t, \mathbf{q}) = \frac{1}{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} \cos\left\{\mathbf{q} \cdot \left(\mathbf{r}_j(t_{\rm w} + t) - \mathbf{r}_j(t_{\rm w})\right)\right\}$$
$$\chi_4^{\alpha}(t_{\rm w}, t_{\rm w} + t, q) = N_{\alpha} \left[\left\langle \left(f_s^{\alpha}\right)^2 \right\rangle - \left(\left\langle f_s^{\alpha} \right\rangle\right)^2\right]$$

Scaling of Dynamic Susceptibility χ

$$C^{\alpha} = \langle f_s^{\alpha} \rangle$$

 \longrightarrow for SiO₂ scaling: $\chi_4^{\alpha}/\chi_{\max}^{\alpha} = \phi(\mathbf{C}(\mathbf{t}, \mathbf{t}_w), q, \alpha) \longrightarrow$ universal

Scaling of Global Incoh. Intermediate Scattering Fct. C

 $C = C(z(t_{\rm w}, t), q, \boldsymbol{\alpha})$

Particle Type: Common Aging Clock

Local Incoherent Intermediate Scattering Function

compare fragile & spin glasses: \rightarrow universal scaling

[Castillo & Parsaeian, '07, '09] & [Castillo & Chamon et al., '02 - '04]

NOT Scaling of Local Incoh. Intermediate Scattering Fct.

$$f_{s,\mathbf{r}}^{\alpha}(t_{w},t_{w}+t_{\text{fix}},\mathbf{q})) = \frac{1}{N_{\mathbf{r}}^{\alpha}} \sum_{\mathbf{r}_{j}(t_{w})\in B_{\mathbf{r}}} \cos\left(\mathbf{q}\cdot\left[\mathbf{r}_{j}(t_{w}+t_{\text{fix}})-\mathbf{r}_{j}(t_{w})\right]\right)$$

subbox $B_{\mathbf{r}}$ too large

wave vector q too small

NOT Scaling: Reason

$$f_{s,\mathbf{r}}^{\alpha}(t_{w},t_{w}+t_{\text{fix}},\mathbf{q})) = \frac{1}{N_{\mathbf{r}}^{\alpha}} \sum_{\mathbf{r}_{j}(t_{w})\in B_{\mathbf{r}}} \cos\left(\mathbf{q}\cdot\left[\mathbf{r}_{j}(t_{w}+t_{\text{fix}})-\mathbf{r}_{j}(t_{w})\right]\right)$$

to determine for c = 1, 2, ..., 200independent simulation runs $P_c(f_{s,\mathbf{r}})$

NOT Scaling: Reason

$$f_{s,\mathbf{r}}^{\alpha}(t_{w},t_{w}+t_{meso},\mathbf{q})) = \frac{1}{N_{\mathbf{r}}^{\alpha}} \sum_{\mathbf{r}_{j}(t_{w})\in B_{\mathbf{r}}} \cos\left(\mathbf{q}\cdot\left[\mathbf{r}_{j}(t_{w}+t_{meso})-\mathbf{r}_{j}(t_{w})\right]\right)$$

\longrightarrow distribution of distributions

Improved Scaling of Local Incoh. Intermed. Scattering Fct.

 $\rightarrow P(f^{\alpha}_{s,\mathbf{r}}(t_{\mathrm{w}},t))$ scales with $C^{\alpha}_{\mathrm{meso}}(t_{\mathrm{w}},t)$

Summary

Aging Dynamics of Strong Glass Former SiO₂:

Microscopic: Single Particle Jump Dynamics:

▶ Only t_w -dependence: $N_p/\Delta t_w$ (not $P(\Delta R)$ and not $P(\Delta t_b)$) [PRL 2013,EPL 2015]

Scaling of Dynamic Heterogeneities:

- ▶ (t, t_w) -dependence of χ and $P(f_{s, \mathbf{r}})$ governed by $C(t, t_w)$
- $P(f_{s,\mathbf{r}}) \longrightarrow$ intermediate length scale?
- common aging clock for Si and O

[KVL, CH Gorman, HE Castillo, JCP 144, 234510 (2016)]

Universality:

 Similar aging dynamics of strong & fragile glass formers (microscopic & scaling)

Acknowledgments:

Supported by SFB 602, FOR1394, NSF REU grants PHY-0552790, PHY-0997424, PHY-1156964, and DOE Grant No. DE-FG02-06ER46300. KVL thanks A. Zippelius & University Göttingen.

Extra Slides:

Scaling of Dynamic Susceptibility

$$\chi_{4}^{\alpha}(t_{\rm w}, t_{\rm w} + t, q) = N_{\alpha} \left[\left\langle (f_s^{\alpha})^2 \right\rangle - (\left\langle f_s^{\alpha} \right\rangle)^2 \right]$$

