February 14, 2023 PHYS 338 Spring 2023
IN-CLASS WORK: DLA (CONTINUED)

| will start class with reminding us of the flow chart for the DLA model.

1. Fractal Growth: Random Walk in Two Dimensions

la. | will guide us through the solution of the random walk in two dimensions. You find the
solution in
“kvollmay/share.dir/inclass2023.dir/classfractalla.py

For the fractal growth DLA model we will need a random walk in two dimensions. Write a
python-program for a random walker on a two dimensional lattice (all four directions being
equally likely), starting at z = 0 and y = 0 and (print and) look at x(¢) and y(t). You may
use the solution program ~“kvollmay/share.dir/inclass2023.dir/classrndwalk2a.py.

For looking at x(t) and y(¢) in the same figure, you can use the command (assuming that
your program is called classfractalla.py)

./classfractalla.py > j; xmgrace -block j -bxy 1:2 -bxy 1:3

1b. Movie

| will also guide us through making a movie of the random walker on a lattice leaving a trail
behind. We first look together at sample_latticemovie.py and then at the solution of the
random walker on a lattice with a random walker which leaves a trail behind. The soluton is
in

“kvollmay/share.dir/inclass2023.dir/classfractallb.py

Next let's make a movie of your random walk. Define a lattice (lattice) of size 30x30 and
initialize it for all sites equal to zero. Put your initial walker at site x = 15 and y = 15. We
want to make a movie of the random walker where we mark on the lattice the current random
walker site with the lattice value 2 and we mark any previously visited site with 1 (This is
just for our fun.). To make a movie we first make an image for every random-walk step. (So
please use only NSTEPS=40 random walk steps!) To see how to make these pictures
see the example

“kvollmay/share.dir/pythonsamples.dir/sample_latticemovie.py Once you have
all pictures in frame* you can run the movie with

animate -delay 30 -pause 5 frame*png

3. Start Random Walker on Circle

Initialize the lattice with all lattice sites being zero and only in the middle of the lattice is a
seed with value one. Use a lattice size LATSIZE=100. We want next to implement that a new
random walker starts randomly somewhere on a circle (uniformly distributed) with midpoint in
the middle of the lattice and with radius RMAX+2. For the DLA-program we will use RMAX=2
but for now use RMAX=20. To check that you draw your random walker indeed equally likely
on a circle, add to your program that you put 50 initial walkers on their starting point (not
yet with random walk steps) and mark for each of these 50 starting points the lattice with the
value 2. Make only one image of your lattice after these 50 markings on the lattice. To get a
pdf-file of your frame use (similar to above) in the header of program



import matplotlib.pyplot as plt

and for example
plt.imshow(lattice,interpolation=’nearest’)
plt.savefig(’frame3.pdf’)

4. DLA: Random Walk Recycle your program from the previous step and take out of this
program now the loop over 50 starting points, instead start the random walker at only one
point on the circle and use RMAX=2. Add to your program a loop over NSTEP=50 random walk
steps. To check your program, assign to each site, which is visited by the random walker, the
value 2. Print the lattice after this random walk and look at it. Hint: Use your work above
from step la of the fractal growth section.

5. DLA: Distance

5a. We work next on step IV of the DLA rules, for which you need to keep track of the
distance r of your walker from the midpoint of the lattice. Add to your program of 4. the
determination of r . (Hint: For J in python use in the header, as already in the sample

file, import numpy as np and then for example v/5 would be np.sqrt(5)). To check your
program print for every random walk step x,y,LATMID,r and check by hand that you get the
right distance from the midpoint of the lattice. Do NSTEP=200 random walk steps.

5b. Now replace the loop of 100 random steps with a while loop while walkstop == O:.
Set walkstop = 0 before this while loop and set walkstop = 1, as soon as 7 > 2 R..
Initialize Rpyax to Rpmax = 3.0 and np.random.seed(11). Run your program and check that
your stopping of the random walk works as intended.



