In-Class Work: Mini-Project III

I will start class with showing the complete implementation of the Nagel-Schreckenberg traffic flow model which is in

```
~kvollmay/share.dir/inclass2023.dir/traffic9.py
```

And will show a few of the resulting spacetime diagrams.
Today you will work again in groups of two on assigned mini-projects (see below to which group and project you belong). All of you will do analysis using the Nagel-Schreckenberg traffic flow model.

We define the mean velocity at time t as

$$
\begin{equation*}
v_{\mathrm{av}}(t)=\frac{1}{N} \sum_{i=0}^{N-1} v_{i}(t) \tag{1}
\end{equation*}
$$

Mini-Project III. 1 (Wuji and Chris)

Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2023.dir/traffic10_miniIII1.py III 1a:
Look at this program and confirm that it determines $v_{\mathrm{av}}(t)$.

III 1b:

Run this program for PDEC=0.0, VMAX=4 and for PCAR=0.1 (and MAXTIMESTEPS=300). Look at the result.

III 1c:

Run this program also for the following $\operatorname{PCAR}=0.2,0.3,0.4,0.6,0.8$.

III 1d:

Make one figure $v_{\mathrm{av}}(t)$ with all investigated PCAR. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\mathrm{av}}(t)$ for PDEC=0.0 and all investigated PCAR. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your ~/share.dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.
III 1e: (if time)
If you have time left, you may want to also determine $\quad j_{\mathrm{av}}(t)=c \star v_{\mathrm{av}}(t)(1)$
where c is the concentration of cars, which is the (number of cars) devided by the (ROADLENGTH). Print a third column with $j_{\mathrm{av}}(t)$ for the different values of PCAR as before and make a figure of $j_{\mathrm{av}}(t)$ with again all different PCAR curves in one figure.

Mini-Project III. 2 (Gwynne and Amin)

Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2023.dir/traffic10_miniIII1.py

III 2a:

Look at this program and confirm that it determines $v_{\mathrm{av}}(t)$.

III 2b:

Run this program for $\operatorname{PDEC}=0.25$, VMAX=4 and for $\mathrm{PCAR}=0.1$ (and MAXTIMESTEPS=300). Look at the result.

III 2c:

Run this program also for the following PCAR=0.2, 0.3, 0.4, $0.6,0.8$.
III 2d:
Make one figure $v_{\mathrm{av}}(t)$ with all investigated PCAR. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\text {av }}(t)$ for PDEC=0.25 and all investigated PCAR. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your ~/share.dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

III 2e: (if time)

If you have time left, you may want to also determine

$$
j_{\mathrm{av}}(t)=c \star v_{\mathrm{av}}(t)
$$

where c is the concentration of cars, which is the (number of cars) devided by the (ROADLENGTH). Print a third column with $j_{\mathrm{av}}(t)$ for the different values of PCAR as before and make a figure of $j_{\mathrm{av}}(t)$ with again all different PCAR curves in one figure.

Mini-Project III. 3 (Will and Michael)

Copy into your working directory ${ }^{\sim}$ kvollmay/share.dir/inclass2023.dir/traffic11_miniIII3.py
III 3a: You will see from the previous groups that $\mathrm{v}_{\mathrm{av}}(t)$ equilibrates after some time to some value v_{eq} around which v_{av} fluctuates. Your group will determine the average of the long time limit of $v_{\mathrm{av}}(t)$ as function of c. Confirm that traffic11_miniIII3. py indeed determines

$$
\begin{equation*}
v_{\mathrm{eq}}(c)=\frac{1}{\left(t_{\mathrm{tot}}-t_{\mathrm{eq}}\right)} \sum_{t>t_{\mathrm{eq}}}^{t_{\mathrm{tot}}} v_{\mathrm{av}}(t) \tag{6}
\end{equation*}
$$

We now want to see how $v_{\text {eq }}$ depends on the concentration of cars

$$
\begin{equation*}
c=\text { nocars/double(ROADLENGTH) } \tag{7}
\end{equation*}
$$

There is no need to understand the theoretical values. I will explain them if there will be enough time in class.
III 3b:
Run this program for $\mathrm{PDEC}=0.0$. This will take a few minutes. Look at the result.

III 3c:

Ensure to keep PDEC=0.0 (this is specific to your group) and run the program three times to get results for VMAX=3 and VMAX=4 and VMAX=5.
III 3d:
Make one figure $v_{\text {eq }}(c)$ with all investigated VMAX. Today is not enough time for making talk slides, instead your result for today is one figure. So for your group this means $v_{\text {eq }}(c)$ for

PDEC=0 and all investigated VMAX. Label your result with what it shows. Put your graph (eps-file or xmgrace-file) into your $\sim /$ share. dir and give read permission. We will all look at your result and try to interpret (just words are fine) your results.

III 3e: (if time)

If you have time, you may include the theoretical curve. (I will discuss this in class.)

III 3f: (if time)

Now use PDEC=0.25 and run the program again for VMAX=3 and VMAX=4 and VMAX=5. Make another figure with these three curves. (There is no theory for this)

