IN-CLASS WORK: MOLECULAR DYNAMICS SIMULATION (DRIVEN DAMPED PENDULUM

You find the solutions to the previous classes on molecular simulations for example in

~kvollmay/share.dir/inclass2025.dir/md3.py

At the beginning of class I will introduce the equations of motion for the driven damped pendulum.

6. Driven Damped Pendulum Intro & Trajectory

 $\mathbf{6a.}$ We just derived the essential equation for the simulation of the driven, damped pendulum to be

$$\frac{d^2\theta}{dt^2} = \tilde{A}\cos\left(\tilde{\omega}_{\rm D}t\right) - \sin(\theta) - \tilde{\gamma}\frac{d\theta}{dt}$$
(2)

where we replaced \tilde{t} by t simply for the convenience of notation. In the computer simulation we solve this equation numerically, i.e. our goal is to determine $\theta(t)$ and $\dot{\theta}(t)$.

Using the Euler method as written on the white board, program this driven damped pendulum. Use

$$t_0 = 0$$
 $\theta_0 = -2.5$ $\omega_0 = 0.0$ $A = 0.95$ $\tilde{\omega}_{\rm D} = 2.0/3.0$ $\tilde{\gamma} = 0.5$ $\Delta t = 0.01$ $n_{\rm max} = 10000$

Print only every 10th MD-step $t, \theta(t), \omega(t)$. (In the following I will call this nprint=10.) Look at $\theta(t)$ and $\omega(t)$. If your data are in the file out6sim.dat you can do this with xmgrace -block out6sim.dat -bxy 1:2 -bxy 1:3 -legend load

6b What is the energy of the driven damped pendulum? Since we chose as time unit $1/\omega_{\text{SHO}}$ and as moment of inertia unit I our energy unit is $I\omega_{\text{SHO}}^2$ and this means that in the program you want to determine $\tilde{E} = \frac{E}{I\omega_{\text{SHO}}^2}$. Please get me when you have your expression for \tilde{E} . Then add the determination of \tilde{E} to your program and print $\tilde{E}(\tilde{t})$ and look at your results with xmgrace. Get me also when you have your result. We will discuss the interpretation of your result.

7. Period Doubling (if time)

Next we will vary \tilde{A} and will observe how \tilde{A} influences $\theta(t)$ and $\omega(t)$. For this task and also for next class, we will use a special time step Δt . We will use

$$\Delta t = \frac{2\pi}{\tilde{\omega}_{\rm D} N_{\rm dt}}$$

Please ask when you get to this, I will briefly explain why we choose Δt this way. Use $N_{\rm dt} = 200$ and increase nmax to 100000.

Look at $\theta(t), \omega(t)$ and E(t) for $\tilde{A} = 1.049$.