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Cooling-rate effects in amorphous silica: A computer-simulation study

Katharina Vollmayr* Walter Kob! and Kurt Binder
Institut fir Physik, Johannes Gutenberg-Universjt&taudinger Weg 7, D-55099 Mainz, Germany
(Received 24 June 1996; revised manuscript 26 August)1996

Using molecular-dynamics computer simulations we investigate how in silica the glass transition and the
properties of the resulting glass depend on the cooling rate with which the sample is cooled. By coupling the
system to a heat bath with temperatiiigt), we cool the system linearly in tim&(t)=T,— yt, wherey is
the cooling rate. In qualitative accordance with experiments, the temperature dependence of the density shows
a local maximum, which becomes more pronounced with decreasing cooling rate. We find that the glass
transition temperaturé&, is in accordance with a logarithmic dependencejoriThe enthalpy, density, and
thermal expansion coefficient for the glass at zero temperature decrease with decyedgmghow that also
microscopic quantities, such as the radial distribution function, the bond-bond angle distribution function, the
coordination numbers, and the distribution function for the size of the rings, depend significangly\Vida
demonstrate that the cooling-rate dependence of these microscopic quantities is significantly more pronounced
than the one of macroscopic properties. Furthermore, we show that these microscopic quantities, as determined
from our simulation, are in good agreement with the ones measured in real experiments, thus demonstrating
that the used potential is a good model for silica glass. The vibrational spectrum of the system also shows a
significant dependence on the cooling rate and is in qualitative accordance with the one found in experiments.
Finally we investigate the properties of the system at finite temperatures in order to understand the microscopic
mechanism for the density anomaly. We show that the anomaly is related to a densification and subsequent
opening of the tetrahedral network when the temperature is decreased, whereas the distance between nearest
neighbors, i.e., the size of the tetrahedra, does not change signifi&al63-182006)03946-X]

[. INTRODUCTION the radius of gyration of polymers, have been investigated
and it was shown that also these quantities depend on the
The last few years have shown that computer simulationsooling ratet>***In particular it was shown that certain
are a very effective tool to gain insight into the structure andmicroscopic quantities show a much stronger dependence on
dynamics of supercooled liquids and glasses and that theyne cooling rate than macroscopic quantitiesy., in Refs. 13
are therefore a very useful extension of experimental andnd 14 which shows that it might be interesting to extend
analytical investigations of such systef3The main reason the experiments in this direction also.
for the success of such simulations is based upon two facts: An important difference between computer simulations of
First, that they allow one to investigate the structure of suctsupercooled liquids and of glasses should be pointed out. In
systems in full microscopic detail and, second, that for mosthe former type of studies one investigates #wiilibrium
atomic systems many interesting dynamical phenomena ocproperties of the system. Thus a direct comparison between
cur on a time scale that is accessible to such simulations, i.ethe results from simulations and experiments is possible.
happen between 162 and 107 s. It is this time range on This is not the case for glasses, which a@nequilibrium
which much of the recent investigations on the dynamics oBystems. As mentioned in the previous paragraph, the tem-
supercooled liquids has been focused, since many of the preerature at which the system undergoes a glass transition will
dictions of the so-called mode-coupling theory, a theory thatlepend on the time scale of the experiment. Since the time
attempts to describe the dynamics of supercooled lidtids scales of the computer simulation are many orders of mag-
can be tested well in this time window. nitude shorter than the ones of a typical laboratory experi-
If in a supercooled liquid the temperature is decreased sment, it follows that the glass transition temperature on the
much that the relaxation times of the system exceed the timeomputer is significantly higher than the glass transition tem-
scale of the experiment or of the computer simulation, theperature one observes in the laborat@gsuming all other
system will fall out of equilibrium and undergo a glass tran-things to be equal (An exception are experiments with ion
sition, provided that it does not crystallize. Thus the resultingpombardment of glasses in which the cooling rates become
glass is a nonequilibrium structure and its properties will incomparable to the ones used in computer simulatidns.
general depend on its history of production such as, e.g., th€hus, if the properties of glasses are investigated by com-
rate with which the sample was cooled or compressed. Sugbuter simulations, it is necessary to see how these properties
dependences have indeed been found in experiments and depend on the way the glass was produced before a compari-
computer simulations. For example, it has been demonstratezbn with real experiments can be made. Such a check is of
in experiment3® and in computer simulatiofis** that the  particular importance if one is interested in the microscopic
density or the glass transition temperature depends on th@woperties of the glass since, as we have mentioned above,
cooling rate. In some of these simulations also more microthese quantities usually show a stronger dependence of the
scopic quantities, such as the radial distribution function oproduction history than the macroscopic properties.
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The goal of the present paper is twofold. On the one handA ¢ Cg,=133.5381 eV A% and Coo=175.0000 eV
we want to investigate how the cooling rate affects the mi- -6 16 The partial charges; are qg=2.4 andgo=—1.2
croscopic properties of atrong glass former and compare 4nq 2 is given by 1602.19/(48.8542) eV A. The so-
these dependences with thezﬁfults of a similar simulation Wgefined potentials for the Si-O and O-O interactions have the
did for afragile glass formet. Second, we want to inves- nphysical property of diverging to minus infinity at small
tigate whether the two-body potential that was recently progistances. However, this is not a severe drawback, since in
posed by van Beest, Kramer, and van SafftéBKS) for the  orger to get to these small distances the particles have to
description ofcrystalline silica is able to reproduce also oyercome a barrier which is, e.g., in the case of the Si-O
structural properties oamorphoussilica. Apart from being jnteraction, on the order of 5000 K. In our simulations we
of great importance in chemistry, geology, and industrial aphaye observed that even at a temperature of 7000 K the par-
plications, silica is also a prototype of a network-forming ticies are relatively unlikely to cross this barrier, thus indi-
glass and thus it has been investigated extensVeffSince  cating that theeffectivebarrier is probably even larger than
the BKS potential contains only two-body terms, it can besoog K. In order to prevent, in the rare cases in which the
implemented in a simulation much more efficiently than aparticles cross the barrier, the particles from fusing together,
potential which contains also three-body terms. This in turye have substituted the potential given by E. by a har-
allows one to make longer runs and thus to study the equimonic potential when;; is smaller than the location of the

librium properties of the system at lower temperatures or Qarrier, ie., forr,; s1.1”936 A andr;;<1.439 A in the case

investigate glasses which have a lower glass transition temst the Si-0 and 0-O interactions. Note that for intermediate
perature and are therefore more realistic. and low temperatures this modification does not affect the

The rest of the paper is organized as follows. In the nexhgienial given by Eq(1) and that in this limit we are thus
section we give the details of the used potential as well as q;vorking with the usual BKS potential.

the simulation. Section Ill contains the results and consists of The Coulomb interaction was computed by using the

three parts: In the first one we study the properties of thg=\ya1d method2° with a constanta/L of 6.5 wherel is
syste_mdunng the cooling procedqre anq therefore the glassye size of the cubic box, and by using gllvectors with
transition. In the second part we investigate how the ProPely <6 27/L. In order to save computer time the non-
ties of the glass depend on the cooling rate with which it Wagsqiompic contribution to the potential was truncated and

produced, i.e.after having been cooled to zero temperature. gpiaq at a distance of 5.5 A. Note that this truncation is not

The third subsection is then devoted to investigate the SySteWeingibIe since it affects the pressure of the system. We will
at finite temperatures in order to relate th.e.properties of thecomment on this point more when we discuss the tempera-
system in |ts' glass phase to the ones at f|n|te temperature. {fj ¢ dependence of the density. In order to minimize surface
the last section we then summarize and discuss the resultSstte s periodic boundary conditions were used. The masses
of the Si and O atoms were 28.086 and 15.9994 u, respec-

Il. MODEL AND DETAILS OF THE SIMULATION tively. The number of particles was 1002, of which 334 were

. . . L silica atoms and 668 were oxygen atoms.
As already mentioned in the Introduction, silica is avery o . simulations were done at constant pressure

impqrtant' glasg former and thus there have b_een many invegy oxi=0), thus allowing us to compute the temperature de-
tigations in which this system has been studied by means qfoqence of the density and the specific heat at constant
computer simulations. Thus it is not surprising that there arey g5 16 and hence to compare our results with real experi-
many different types of potentials in use which seem to b ents. For this we used the algorithm proposed by

able to give a more or less realistic description of the rea ndersef® with the mass of the piston set to<4L0~3 u for
potential. One of the most successful is the so-called BKg; o equilibration of the system and tox1L0~3 u for the

Fotentlal, prog‘gsled by V?]n Beetf]t,tli[]a_\mer,t antc_J Y"?m Sbellntten ﬁoduction. The equations of motion were integrated with the
ew years ago. Is was shown that this potental IS able o elocity form of the Verlet algorithm. The step size was 1.6

give a good description of the various crystalline phases %5 which was sufficiently small to allow us to neglect the

silica?® It is therefore interesting to see how well it is able to drift in the enthalpy of the system when the thermostat was
describe the amorphoqs phase as well. Qne of the appeallrp}g)t active. This thermostat was a stochastic collision proce-
features of th's_ p_otentlal Is that it contains only tWO'bOdy_dure which periodically substituted the velocities of all the
terms, thus av0|d|n_g the thre_.\_e-body terms that are Present il ticles with those drawn from a Boltzmann distribution
some other. potentials for S'I'(.:a’ mgklng the BKS potentlalthat corresponded to the temperature of the heat bath. For the
very attractive for computer simulations. L equilibration we coupled the system at every 50 time steps to
The functional form of the BKS potential is given by a a stochastic heat bath and propagated it in (@) en-
sum of a Coulomb term’ an exponentia_l, and_a_lva_n der Waa|§emble at a temperature of 7000 K for about 32 000 time
term. Thus the potential between particland] is given by steps. After this time the configuration and velocities were
5 saved for the subsequent quenching procedure. Then the
H(ri)= giq;€ +A”efsijrij_ﬂ 1) equilibration run afT,=7000 K was continued for another
N Y o’ 40 000 steps and the resulting configuration saved. These
40 000 time steps were long enough to completely decorre-
wheree is the charge of an electron and the constafs late the system at this temperature. This process was repeated
Bij, and C;; are given by Ags=0.0 eV, Ago until we had 20 configurations &t,=7000 K which were
=18003.7572 eV,Aqo=1388.7730 eV,Bg5=0.0 A=, completely uncorrelated.

Bsio=4.87318 Al Byp=2.76000 A1, Cgs=0.0 eV In order to simulate the cooling process we took these
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configurations as a starting point of a constant pressure run_ s . |
in which T,,, the temperature of the heat bath, was decreased

linearly in timet, i.e., T(t)=T,— yt. HereT, is the initial T ~17.0 .
temperaturé=7000 K) andy is the cooling rate. The system '
was coupled to this heat bath every 150 time steps and be-

tween these stochastic collisions it was propagated in the

(NPH) ensemble, wherdi is the enthalpy. This cooling -17.5 1
process was continued until the temperature of the heat bath
was zero, i.e., for a tim&; /y. The so-obtained configuration
was subsequently relaxed with respect to the coordinates of

the particles and the volume of the system to its nearest —-18.0

metastable state in configuration space. For the sake of effi-

ciency this relaxation was done with a multidimensional con- 4.410"K/s T T
jugate gradient methott. An equivalent alternative would _~18.5 . ‘ : ‘

have been to continue the molecular-dynan{i) simu- 2500 3500 4500 5500 6500
lation at T,=0 for a very long time. The so-obtained final T, [K]
configurations were then analyzed in order to investigate

how the so-produced glass depends on the cooling rate. FIG. 1. EnthalpyH of the system vq,,, the temperature of the

The cooling rates investigated were 1XIH0%, heat bath, for all cooling rates investigated. Main figure: enlarge-
5.68x 10 2.84x 10 1.42x 10" 7.10< 10, 3.55< 103, ment of the glass transition region. The solid and dashed bold
1.77x 10", 8.87x 10, and 4.44 10'? K/s. Although these curves are the smallest and largest cooling rates, respectively. Inset:
cooling rates are of course many orders of magnitude largétll range of temperature.
than the ones used in the laboratory, it is currently not pos-
sible to simulate a quench of the system with cooling ratesv, Vv, andp,, are the mass of the piston, the volume of the
that are significantly smaller than the ones used here, sincg&stem, and the external pressure. Earlier simulations of
for the smallest co_ollng rate the length of the runs was aboujlass-forming systems have shown thHT,,) has a notice-
10° MD steps which took about 340 h of CPU time on a aple bend when the temperature is lowered from high tem-
IBM-RS6000/370. . . _peratures to low temperatures. It is assumed that at the tem-

We also mention that the range of cooling rates investiperature at which this bend occurs the system falls out of
gated here is about a factor of 10 smaller than the one Wequilibrium, because the typical relaxation times of the sys-
used In & lﬁlm”af investigation on a binary Lennard-Jonegem exceed the time scale of the cooling process. Therefore
mixture =" The reason for this is that for the Lennard- this temperature can be identified with the glass transition
Jones system the potential is short ranged whereas the |0”93‘mperatureTg.
range potential needed for sili¢&q. (1)] slows down the In Fig. 1 we show the enthalpy of the system as a function
computation of the forces by about a factor of 30. of the temperature of the heat bath for all cooling rates in-

In order to improve the statistics of the results it wasyestigated. The inset shows the whole range of temperature
necessary to average for each cooling rate over several indgng we see that the curves show the mentioned bend at a
pendent runs. For most values gfwe averaged over ten temperature around 3500 K. This is thus the temperature
independent starting configurations which were obtained agange in which the system falls out of equilibrium for the
described above. An exception wepe-7.10< 10" K/s and  ¢ooling rates investigated. This temperature range is shown
y=3.55x 10" K/s for which we averaged over 20 configu- enlarged in the main figure. We now see that there is a clear
rations. dependence dofi(T,) on the cooling rate in that the curves

corresponding to the large cooling rates are higher than the
IIl. RESULTS ones for the small _cooling rates. At high temperatures the
curves for intermediate and small cooling rates fall on top of

This section consists of three subsections. In the first oneach other to within the noise of the data, which means that
we investigate the properties of the system during the coolfor these temperatures and cooling rates the system has not
ing from high temperatures to zero temperatures, and howet fallen out of equilibrium. Only at lower temperatures do
the occurring glass transition depends on the cooling rate. Ithe curves for the intermediate values of the cooling rate split
the second subsection we study how the properties of theff from this equilibrium (liquidus) curve and thus is the
glass at zero temperatures depend on the cooling rate. In thgstem starting to undergo a glass transition and we see that
third subsection we use the information that we gained in thghe temperature at which this happens decreases with de-
first two subsections to understand better the microscopicreasing cooling rate. Also note that for the largest cooling
structure of silica at finite temperatures. rates this splitting off happens at the starting temperature,
thus indicating that for such large cooling rates the system
falls out of equilibrium immediately.

_ B _ ) In order to determine the cooling rate dependence of the

One of the simplest quantities one can study in a coolingemperature at which the system undergoes its glass transi-
process is the enthalpl of the system which is given by tion we use the concept of the “fictive temperature” as in-
H=Eyin+ Eport MV?/2+ pe,V, WhereE,;, and E, are the  troduced by Tool and Eichlir?” This concept makes use of
kinetic and potential energy of the system, respectively, anthe observation that at high temperatures the curves for not

A. Cooling-rate dependence of the quench
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rate dependence as given in E8) is not correct, because

< 3300 | 2 we are not yet in the range of cooling rates where &j.
= holds, or that the silica model studied here does not repro-
duce well the glass transition temperature.
3200 - We also mention that further sources of uncertainty in the
determination ofT are finite-size effects in the simulation.
3100 - L Such dependences have indeed been observed in experiments

with relatively simple liquid®® and also a recent computer
simulation of silica has shown that the relaxation behavior of
3000 - " such a system is severely affected by finite-size effécts.

In a similar study on cooling-rate effects in a Lennard-
Jones glasé we have found that the dependencdgfon the
cooling rate is also fitted well by the function
To(7)=Tc+(Ay) ™, which follows from the assumption
that the temperature dependence of the relaxation time is
given by 7(T)=A(T—T,) ~?, a functional form that is sug-
gested by the so-called mode-coupling theory of the glass
transition? We therefore tried to fit our data for thedepen-
dence ofT 4 also in the present case with this functional form
and found that it is also able to describe the data \weith
aTEC=2778 K and§=2.52) (dashed line in Fig. R Thus, if
B
t

2900 - L

13

14
10 10 v [K/s]

FIG. 2. Glass transition temperaturg vs the cooling rate. The
solid line is a fit with the functional form given by E@2), the
dashed line with a power law, and the thin solid line with an
Arrhenius law.

too large cooling rates fall onto a master curve and that

low temperatures the curves have the same form, i.e., can b idered 1 d. Furth
collapsed onto a master curve by shifting theertically. ey can be considered as equally good. Furthermore, we

The intersection of the extrapolation of these two mastepave. alsclx ftned I’t]o fit the datz W'thban Alrlrhhemus Iayv, thel
curves gives then an estimate for the glass transition ten{&ur;Ct'ol\'?at C;LmttRf"‘t ?eems dt% ESICH Ewe the et>|<p(—*ar|menta
perature T,. We therefore fitted the curves for ata.(Note that Resler and Sokolov have recently demon-

y=3.55x< 101 K/s in the temperature range 5000<KT,< strated that the viscosity of silica at temperatures a bit above

6750 K with a straight line and did the same with the curvesTg ghoyvs a n_on—Arrhenlus behavn:ff(but th.|s range of vis-
for y=<1.42<10% K/s in the low-temperature range O cosity is outside the range of our simulatipithe result of

<T,=<1250 K. Note that the determination of the glass tem—t.hls type_of fit is 'r.'CIqud in the figure as we{lj_hm solid
ne) and is clearly inferior to the two other functional forms.

perature via the mentioned procedure is only reasonable hus it seems that the relaxation times of silica show at hiah

the high-temperature part of the curve actually falls onto th ust 1€ refaxation t n W '9

liquidus curve. Since this is not the case for the three faste% mperatures a qualitative dlfferent temperature dependence
an at low temperatures, which is analogous to the depen-

(r:;)tzlér.]g rates, we have not determing&g for these cooling dencet fou_”c_jl intwat_le_?f a network former that is in many
In Fig. 2 we show the so-determined glass transition tem&SPSC"S Simiiar fo sflica.
perature as a function of the cooling rate. We see that % v'?/\ﬁesr:attﬁg 228?{;?’ V\rlztgbize\:\;?i:dcganfg%tgczzzgt ?)Sol?ch a
variation of y by about 1.5 decades gives rise to a variation h T is si gf | th y th. | ) q
of T, of about 350 K. Also included in the figure is a fit to oo 'gc "' g IS SIGNAICAntY 1arger than fe vaiues measure
the data with the functional form in rgal experiments in WhICh this quantity was determined for
7,8
various materials:"®It is found that a variation of the cool-
B ing rate by one decade gives rise to a chang& pbn the
To(y)=To— (A (2)  order of 10 K, thus much less than the 300 K determined
Y here. The reason for this discrepancy is probably the huge
(solid line), which is obtained by assuming a Vogel-Fulcher difference between the cooling rates used in the simulation
dependence of the relaxation timeof the system on the and the one used in the laboratory. If we use the parameters
temperature, i.e.7(T)=A exdB/(T—To)], and arguing that from our fit to T, and extrapolate thi§,(y) dependence to a
the system falls out of equilibrium at that temperature ataboratory cooling rate of 0.1 K/s, we find that the predicted
which the relaxation time is on the order of the time scale ofchange ofT is only abot 5 K per decade of cooling rate,
the cooling process, i.e5(Ty) = vy 1133 We see that this which is in good agreement with the typical values found in
type of fit describes the data very well, as is the case in reaxperiments:’®
experiments. For the parametersA and B we find By differentiating the enthalpy with respect to the tem-
1.8x10 !¢ s/K and 2625 K, respectively. The Vogel tem- peratureT,, we obtainc,, the specific heat at constant pres-
peratureT,, i.e., the glass temperature that would be ob-sure. Since the original data were a bit too noisy to allow for
served upon an infinitesimal cooling rate, is 2525 K, which isa direct differentiation, we parametrizét{ T,,) with a spline
significantly higher than the experimental value of 144&'K. under tensioff and differentiated this spline. Figure 3 shows
(Here we assume that for the cooling rates used in the labdhe resulting specific heat for all cooling rates investigated.
ratory the dependence @f, on the cooling rate is sufficiently To facilitate the comparison with experimental values we
small, so that we can use the results of experiments at a finiteave chosen the units of, to be J/g K. From this figure we
cooling rate as a good approximation fiy.) Thus we come see that at high temperatures the fastest cooling rates show a
to the conclusion that either the extrapolation of the coolingstrong increase with decreasing temperature. The reason for

e two functional forms are merely seen as fitting functions,
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FIG. 3. Specific heat v, for all cooling rates investigated. The FIG. 4. Density of the system VE, for all cooling rates inves-
solid and dashed bold curves are the smallest and largest cooliriipated. The solid and dashed bold curves are the smallest and larg-
rates, respectively. est cooling rates, respectively. Note the presence of a local maxi-

mum in p at temperatures around 4800 Kifis small.
this is that for these fast cooling rates the system falls out of
equilibrium already at the start of the quen@ee Fig. 1, ancy might, however, not be the inadequacy of the potential,
thus giving rise to this increase af,. After this increase but the fact that the Debye temperature of silica is relatively
Cp attains a maximum of about 1.85 J/g K at a temperaturenigh [1200 K, (Ref. 40] thus showing that quantum effects
around 4200 K and then drops again to a value of 1.25 J/g Knight be important even at the temperatures we are consid-
for T,=0. ering.

The real equilibrium curve o€, at high temperatures is We now turn our attention to a further important macro-
given by the curves for slow cooling rates. We see that scopic quantity, the density. In Fig. 4 we showp as a
increases slowly from a value around 1.80 J/g K to a valudunction of the bath temperatuig, for all cooling rates in-
around 1.95 J/g K when the temperature is decreased frowestigated. As in the case of the enthalpy we find that at high
7000 to 4300 K. At this latter temperature the specific heatemperatures the curves for all but the three fastest cooling
starts to drop quickly, indicating that the system undergoesates fall onto a master curve, the equilibrium curve. From
the glass transition, and attains a value around 1.25 J/g K ahe curves corresponding to small cooling rates we recognize
Tp,=0 K. This value is close to the classical Dulong-Petitthat this equilibrium curve shows a maximum at around 4800
value of 1.236 J/g K expected for a harmonic solid. We noK. Thus we find that, in accordance with experimefits?
tice that in the temperature range where the glass transitioiiiis model shows an anomaly in the density. The experimen-
takes place the temperature dependenag, a$ independent  tal value for the temperature of the maximunyitis 1820 K,
of the cooling rate to within the accuracy of our data, if thethus significantly lower than the temperature at which we
cooling rate is not too large. This is in contrast to our find-observe the anomaly. Since we see that, within the accuracy
ings for the previously investigated Lennard-Jones sysfem, of our data, the temperature at which this anomaly occurs is
for which we found that the drop ig, at the glass transition independent of the cooling rate, we conclude that for the
becomes steeper with decreasing cooling rate. Since we haBKS potential this anomaly is indeed at a temperature which
seen a clear cooling rate dependence of the temperature de-too high, even if one would cool the system with a signifi-
pendence of the enthalpigee Fig. 1, it can be concluded cantly smaller cooling rate. It has to be mentioned, however,
that its derivative, i.e.¢c,, should show a cooling rate de- that for different potentials this anomaly occurs at even
pendence also and that thus the reason for our failure thigher temperatures or is not present at“athus showing
detect one must be given by the statistical inaccuracy of outhat with respect to this feature the BKS potential is superior
data. to other potentials.

Since neither the low- nor high-temperature dependence For intermediate and small values ¢fthe value ofp
of ¢, shows a strong dependence on the cooling rate,i¥  decreases after having passed through the maximum. At even
not too large, we can compare the valuescpfabove and lower temperatures the curves then start to increase again.
below the glass transition temperature with their experimenThe temperature at which this increasing trend starts de-
tal counterparts. Biekner reports that around 1500 K the creases with decreasing cooling rate, thus showing that the
value ofc, for amorphous silica is about 1.23 Jigkwhich  curves follow the low-temperature side of the hump the
compares well with the one found in this simulation, i.e.,longer the smaller the cooling rate is. At even lower tempera-
1.25 J/g K. At a temperature of 2000 K Rikner gives the tures the curves become, within the accuracy of our data,
value 1.50 J/g K, which is significantly less than the onestraight lines with negative slope.
found in our simulation¢,~ 1.8 J/g K afT,=7000 K). Thus From Fig. 4 we also recognize that, in the temperature
we see that the here-used BKS potential does not give arange considered, the relative change in density is relatively
accurate description of the magnitude of the jump in thesmall (less than 10%which is in accordance with the ex-
specific heat. One possible reason for the observed discreperimental finding that the thermal expansion coefficient of
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FIG. 5. Thermal expansion coefficient a=0 K vs cooling FIG. 6. Enthalpy after the quench vs the cooling rédeen
rate. circles. The solid and dashed curves are fits with the functional

forms given by Eqs(4) and (5), respectively. The three horizontal
silica is smal****We also note that at low temperatures thelines are the value of the enthalpy of the relaxed configuration at
density is around 2.3 g/cfy which compares well with T,=7000 K, T,=4840 K, andT,=3220 K (top to botton. See
experiment§>“3 It is interesting that a simulation with the text for details.
original BKS potential, i.e., without the cutoff at 5.5 &ee
Sec. I), gave at 500 K a density of 2.6 g/crfy thus about Subsection is to see how the cooling rate affects various mac-
10% higher than the one found in this wd¥kThis shows roscopic and microscopic quantities of the glas3 at0 K,
how sensitively quantities like the pressure depend on thée., of the final product of the quench and the subsequent
details of the potential at large distances. Since the introdudelaxation of the system as described above.
tion of the cutoff moves the value of the density closer to the  The first quantity we investigate is the value of the en-
experimental one, we thus find that this cutoff gives rise to dhalpy of the glass af=0 K. In Fig. 1 we have seen that at

more realistic description of amorphous silica. finite temperatures the curves of the enthatp§T,) follow
From the temperature dependence of the density we caihe equilibrium curve as long as the relaxation time of the
extract system is smaller than the time scale of the cooling process,
i.e., y~ 1. If the two time scales become comparable, the
1oV 1ldp system undergoes a glass transition and the curves for
X~y 3_-|-p: AT 3 H(T,) remainabovethe equilibrium curve. Therefore we

aT| ’
P P expect that the final value of the enthalpy decreases with
the thermal expansion coefficient at constant pressure. Weecreasingy. That this is indeed the case is shown in Fig. 6
determinede, at T=0 K from the slope of the straight line where we showH;, the value of the enthalpy after the
of p(T) at low temperature&see Fig. 4. The resulting cool- quench, for all cooling rates investigated.
ing rate dependence af,(T=0 K) is shown in Fig. 5. We From a formal point of view the cooling process can also
recognize that this quantity shows a decreasing trend withe seen as an optimization problem in which the system tries
decreasing cooling rate and that, within the accuracy of outo minimize the enthalpy. It will manage to do this the better
data, it is not possible to say what the asymptotic value fothe more time it is given to search for this minimum. Thus
very small cooling rates is. However, the experimental valueone might ask what the value of the enthalflye cost func-
of @y, 5.5x10 7 K/s,****is certainly compatible with an tion) is when the system is given a certain amount of time,
extrapolation of our data tg=0. characterized here by the cooling rate, to minintizeSuch

It is also interesting to compare this result with the onetypes of questions have been addressed already in other types
found in a similar investigation of a binary Lennard-Jonesof complex optimization problems and also for other types of
system:* whereno significant dependence of, at T=0 K glass former§>~*® From theoretical arguments one can ex-
on the cooling rate was found. Since a nonzetpis the  pect the cost function to show either a logarithmic or a
result of the anharmonicity of the local potential, we thuspower-law dependence on the cooling rétee.,
come to the conclusion that in this model for silica these

anharmonic effects are cooling rate dependent, whereas they Hi(y)=H?+a;(—Iny)% (4)
are not for the Lennard-Jones system, i.e., for a prototype of
a simple liquid. or

Hi(7)=H?+b1y™, 5

B. Cooling-rate dependence of the properties of the glass

In the previous subsection we investigated how the coolwhereH?, a;, andb; are fit parameters. We therefore fitted
ing rate affects macroscopic quantities like the enthalpy opur data forH; with the two functional forms and the result
the density affinite temperatures. The goal of the presentof these fits is included in Fig. 6 as well. We recognize that,
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FIG. 7. Density after the quench vs the cooling rate. The three AS-O ‘
horizontal lines are the value of the density of the relaxed configu- \;/) 1)
ration atT,=7000 K, T,=4840 K, andT,=3220 K (top to bot-
tom). See text for details. 6.0 - L
in the cooling range investigated, both functional forms fit
the data equally well. The values we obtain fdr? are
—19.1213 eV for the logarithmic dependence and 4.0 | \ I
—19.1252 eV for the power-law dependence. With the accu-
racy of our data we are not able to decide which functional
form, if any, is appropriate to describe our data. This is the 2.0 - t A "
same conclusion we came to in case of the earlier-mentioned | J} | /é N e _
investigation of a Lennard-Jones syst¥m. b LA e
Next we turn our attention to the cooling rate dependence 0.0 AR } = : , ,
of the density. In Fig. 7 we show the density of the glass 2.0 4.0 6.0 [A] 8.0

after the quench versus the cooling rate. The densities we
found for the glass are between 2.27 and 2.38 dfevhich FIG. 8. Radial distribution function(@ gss(r). Main figure:

COTQ?ZSJS well with the experimental values of 2.2 g/the slowest(solid curve and fastes{dashed curjecooling rate.
cm®."™ We see that, ﬂ)ntrary to mOSt, real glas;es OFhe vertical dotted lines give the position of the peaks as deter-
Lennard-Jones systerﬁég ps decreaseswith decreasing mined from experimentésee Table )L Inset: enlargement of the
cooling rate, a behavior that can be understood by remenmsecond-nearest-neighbor peak for four selected cooling rées.
bering our observatiorisee Fig. 4 that for small cooling g.(r) and goo(r) for the slowest(solid curves and fastest
rates the curves for the density follow the equilibrium curve(dashed curvecooling rate. Inset: enlargement of the second- and
also when the latter is decreasing on the low-temperaturgird-nearest-neighbor peak.

side of the density anomaly. It should be noted, however,

that this observed decrease of the final density with decreasioes not make sense to use one of the formulas given in Egs.
ing cooling rate cannot be the correct asymptotic behaviof4) and (5) to extrapolatep(y) to very small cooling rates.

for very small cooling rate. The reason for this is that we After having presented our results on the cooling rate de-
know that at low temperatures the thermal expansion coeffipendence of the macroscopic properties of the glass we now
cient of silica is positivdas can be seen in experiments orturn our attention to the microscopic properties of the system
from the fact that the density decreases with increasing temn order to gain some understanding about how the macro-
perature(see Fig. 4]. Thus we expect that the equilibrium scopic behavior is related to the microscopic one.

curve for the density will, after having shown a decreasing The first quantity we investigate is the radial distribution
behavior for temperatures just below the density anomalyfunction g,z(r) between speciesae and B (.8
bend upward again. If a quench is made with a very smalle {Si,0}).* This function allows one to see how the struc-
but finite, value ofy, the corresponding curve for the density ture of the glass changes on the various length scales when
will fall out of equilibrium in that temperature range where the cooling rate is changed. In FigaBwe showgg;si(r) for

the equilibrium curve will already show theacreasingbe-  the largest and smallest cooling rate investigatadin fig-
havior (with decreasing temperatyreTherefore the final ure), as well as an enlargement of the region of the second-
density of the glass as produced with such a small coolingnearest-neighbor peak for a few selected cooling rétes
rate will belowerthan the one which would be obtained with se). From the main figure we recognize that with decreasing
an infinitesimal small cooling rate; i.e., at very small cooling cooling rate the structural order at short and intermediate
rate the curvep;(y) will increase with decreasing cooling distances(i.e., r<8 A) increases, in that the peaks and
rate. Thus we conclude that the cooling rate dependence afinima become more pronounced. In particular we see that
p; as seen in Fig. 7 is not yet the asymptotic one. Hence ithe height of the first-nearest-neighbor peak changes by
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TABLE |. Location of the first- and second-nearest-neighbor 0.7
peaks in the radial distribution functiag(r). The numbers in pa- )
rentheses in the second column give the error in units of the lastS g .

digit. o
: : _ 0.5 -
Simulation[A] ExperimentA]

sio first peak 1.59%) 1608  1.620 047

second peak 4.12) 418 0.3 |
00 first peak 2.590) 2.626 2.65 '

second peak 5.02) 4,958 0.2 -
SiSi first peak 3.1580) 3.07F 3.12

second peak 5.@5) 5.1¢ 0.1
®Reference 43. 0.0 +—+ — ; \ ‘ ‘
bReference 50. 0.0 2.0 4.0 6.0 8.0 10.0 12.0
‘Reference 51. q A1
about 20%. The amount of this change is significantly larger 04 :
than any change we observed for macroscopic propertiesz ®)Y )y
thus showing that the microscopic properties can show a\g 0.2 1
much stronger dependence on the cooling rate than the mac® ==
roscopic properties do. 0.0 1

In Fig. 8b) we show the radial distribution function for 0.4
the Si-O and the O-O pairs for the largest and smallest cool- ~0.21 os
ing rate investigated. Also in this case we notice a significant '
cooling-rate dependence for distances8 A, i.e., the short- —047 02 |
and medium-range order are affected significantly by the
cooling rate in that the order increases with decreasing cool- —06 7 “y
ing rate. 00|
From the curves presented in Fig. 8 we see that, although 0.8 1 09 11 13 15 17 19 21 23

the height of the various peaks shows a significant depen- 00 20 40 60 80 100 120
dence on the cooling rate, tHecation of the peaks is af- QA

fected much less by a variation gf Thus it is reasonable to
compare the location of these peaks with the ones as deter- { g ‘
mined in experiments. In Table | we give the location of the __ (©
nearest- and second-nearest-neighbor peaks as well as tI% 15
corresponding experimental valu@dso included in Fig. 8as ¢y
vertical dotted lines The locations of these peaks were de-
termined from the data for the slowest cooling rate. We see
that, although the accordance between experiment and the
results of our simulation is not perfect, the BKS potential 0.9
does quite well to reproduce the short- and medium-range
structure of the glass and can therefore, from this point of 0.6

1.2 1

view, be considered as a good model also for amorphous

silica. 0.3 1 oA L
Having investigated the cooling-rate dependence of the 7

radial distribution function we now move on to study how 00 +— ‘ , ‘ ‘

the structure factoS(q) depends ony. Although from a 0.0 2.0 4.0 6.0 8.0 10.0 120

mathematical point of view the radial distribution function qlA™]

and the structure factor contain the same information, the

importance of the latter for scattering experiments makes it g, 9. partial structure factors for the slowésolid curve and
worthwhile to investigate its cooling-rate dependence agastest(dashed curvecooling rate. Insets: enlargement of the first
well. In Fig. 9 we thus show the three partial structure fac-sharp diffraction peakia) Si-Si correlation(b) Si-O correlation(c)

tors. We recognize from these figures that 8{¢) show a -0 correlation.

significant dependence on the cooling rate for small and in-

termediate values df, in that the height of the main peak as debate’? In the case of the Si-Si and Si-O correlations the
well as the so-called first sharp diffraction pg®SDBP, i.e.,  corresponding structure factors show only a weak depen-
the peak to the left of the main peak, depend pnThis  dence ony for q values larger than the location of the main
FSDP has recently been the focus of significant interestpeak. For the case of the O-O correlation, however, even for
since it characterizes the stucture of the glass on intermediatarge values ofy a noticeable dependence 8fq) on y is
length scales and its microscopic origin is still a matter ofobserved, indicating that the short-range order of O-O pairs
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FIG. 10. Partial coordination numbers vs the cooling rédeSi-O pairs.(b) O-Si pairs.(c) Si-Si pairs.(d) O-O pairs. Note the different
scales for the various curves.

changes significantly. The main change in the structure ofast with decreasing cooling rate. The silicon atoms that are
S(g) occurs, however, in all three correlation function for not fourfold coordinated are surrounded in most cases by five
values ofq close to the FSDRsee insefs We see that the oxygen atoms and only a very small fraction is surrounded
cooling rate affects this peak in two ways in that its height agpy three oxygen atoms. Figure (b) shows that most of the
well its position is changed. Since this peak reflects theyxygen atoms are surrounded by two silicon atoms, also this
medium-range order of the system, we thus come to the corbbservation in accordance with the above-mentioned net-
clusion that the structure of the glass on these length scalesigork structure of corner-sharing tetrahedra. The number of
significantly affected by the cooling rate. oxygen atoms that are not twofold coordinated is for all cool-
From the knowledge afy,,,, the location of the first mini-  ing rates less than 3% and decreases quickly to less than
mum in the radial distribution function, we can compute thep.5% with decreasing. Thus we find that for slow cooling
(partia) coordination numbez of particlei, which we define  rates the BKS potential automatically gives the “rules”
as the number of other particlgswith |r;—ri|<ry,. We  commonly postulated for ideal amorphous silica, hamely,
have found that .,;, is essentially independent of the cooling that this system is a “continuous random network.”
rate and therefore we will use in the following always the  The just studied Si-O and O-Si coordination numbers are
same values, i.e.,ry==3.42 A r3°=220 A, and characteristic for the structure of the network on shertest
ro9=3.00 A. In Fig. 10 we shova:B“ the probability that a length scale. The coordination numbers for the Si-Si and the
particle of typea hasn nearest neighbors of type, versus O-O pairs, however, are sensitive on a length scale of the
the cooling ratey. structure that is a bit larger. In Figs. @and 1@d) we show
First we study the nearest-neighbor pairs, i.e., the Si-Ghe cooling-rate dependence of these coordination numbers.
and the O-Si pair§Figs. 1@a) and 1@b)]. We see that the We see that most silicon atoms are surrounded by four other
vast majority of the silicon atoms is surrounded by four oxy-silicon atoms, although at the fastest cooling rate about 18%
gen atoms, which can be understood by taking into accouraf them have a different Si-Si coordination number. This
that at low pressures silica forms a network of corner-sharingqumber shows that most tetrahedra are surrounded by four
tetrahedra, each of which has a silicon atom in its center andther tetrahedra, each of which has a silicon atom in its cen-
four oxygen atoms at its corners. The number of silica atoméger. (See below for a further discussion of this pojirithe
that are not fourfold coordinated is about 5% for the fasteseurves for the O-O coordination numbers show that the most
cooling rate and diminishes quickly to less than 0.5% wherlikely configuration is that an oxygen atom has six other
the cooling rate is decreased. This shows that the local ordexxygen atoms within a distance Ofﬁ and that this prob-
of the network, i.e., the frequency of tetrahedra, increaseability increases significantly with decreasing cooling rate.
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conclusion that the order within the network increases with
decreasing cooling rate.

Since we have just seen that the most frequent coordina-
tion number for the Si-Si and the O-O pairs can be rational-
ized by assuming that the network is composed of corner-
sharing tetrahedra, we now investigate whether this
argument is valid only on a qualitative basis or whether it is
correct even on a quantitative basis. Thus the question is
whether the cooling-rate dependence of the various coordi-
nation numbers for the Si-Si and the O-O pairs can be com-
puted from the knowledge of the cooling-rate dependence of
the coordination numbers of the Si-O and the O-Si pairs. In
order to decide this we assumed that the coordination num-
bers for the Si-O are statistically independent from the ones
of the O-Si pairs. If we postulate that a silicon atom that is a
nearest neighbor of an oxygen atom will have a distance less
_ _ _ thanr>' from all other silicon atoms that are also nearest

FIG. 11. Schematic representation of two corner-sharing tetraneighbors of this oxygen atom, it is relatively simple to com-
hedra. pute the probability how many silicon atoms have a distance
less thanrfﬁ' from any given silicon atom. Using similar
These six oxygen atoms are the ones that sit in the corners ppstulates for the other combinations of particles one can,
the two tetrahedra which are connected by the first oxygee.g., show that within this ansatz the quanf§g is given
atom (see Fig. 1L Thus we come also in this case to the by

P&isi=P&io[3P5si (Pgs)’+3(Pgs))Posi 1+ P 6(Posi) (Pos)) >+ 4(Pgsi)*+ 12P5s (PG *Pgsi |

+PESI5Pas (Pas) +30(Pash)2(Pas’) 2Pas + 10(Paeh) 3 (PEs) 2. (6)

Similar expressions hold for the other values of the coordineighbor oxygen atoms. This is confirmed by the curve
nation numbers shown in Figs. @ and 1@d). Equipped P%’ [see Fig. 10d)], which shows that for fast cooling rates
with these functions we now can compare the prediction ofnore than 20% of the oxygen atoms have more than six
this factorization approximation with the measured valuesther oxygen atoms as nearest neighbors, and that this figure
for the coordination numbers. In Fig. 12 we show the differ-does not drop below 10% even in the case of the slowest
ence between the actual value of the coordination numbersooling rate. That the tetrahedra actually have the local ar-
and the predicted ones, i.€%,,— ngpr. We recognize from rangement suggested above can be inferred from the bond-
Fig. 12a), that for the Si-Si pairs this factorization approxi- bond angles between neighboring atoms and therefore we
mation is very good in that the difference between the actualill investigate this quantity next.
values and the predicted one is less than 1.5% for fast cool- We have seen in Fig. 8 that the nearest-neighbor distance
ing rates and is essentially zero, to within the statistical achbetween silicon and oxygen atoms is essentially independent
curacy of our data, for small cooling rates. Thus we find thabf the cooling rate. Thus we conclude that the tetrahedra do
this factorization approximation works very well for the not change their size significantly when the cooling rate is
Si-Si pairs. varied. However, since we have found that the density of the
This agreement between the real data and the factorizatiosystem depends on the cooling rate, it must therefore be the
approximation is not as good for the case of the O-O pairsase that it is theelative arrangementf neighboring tetra-
[Fig. 12b)]. We see that the discrepancy can be as large asedra which changes with. One possibility to characterize
25% for the fastest cooling rate but that it diminishes, how-this relative arrangement is to consider the various bond-
ever, to less than 13% for the slowest cooling rate. The reabond angles between the different atoms. In Fig. 13 we show
son that the factorization approximation does not work aghe cooling-rate dependence of the distribution function for
well in this case as it did in the case of the Si-Si pairs issome selected angles for various cooling rates. Figu(a) 13
likely to be the fact that two corner-sharing tetrahedra areshows this distribution function for the tetrahedral angle
tilted towards each other; i.e., the angle between silicon ator®-Si-O for all cooling rates investigated. For a perfect tetra-
No. 1, bridging oxygen atom No. 3, and silicon atom No. 2hedra this angle is 109.47°. We see tRajfsio has indeed a
(see Fig. 11is significantly less than 180°. Therefore oxy- maximum close to this ideal angle. The location of this maxi-
gen atom No. 2 is also quite close to oxygen atom No. 1mum is not quite the one of the ideal tetrahedron but with
although the former is, from a topological point of view, decreasing cooling rate it approaches this value. A decreas-
quite far away from the latter. Therefore it is not unlikely ing cooling rate also leads to an increase of the height of the
that oxygen atom No. 1 will have more than just six nearestpeak as well as a decrease of its width. Thus we find that the
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FIG. 12. Difference between the partial coordination numbers  F|G. 13. Distribution function of various angles and cooling
and the prediction of the factorization approximatida) Si-Si  rates.(a) Angle O-Si-O for all cooling rates investigated. The bold
pairs. (b) O-O pairs. solid and dashed curves correspond to the slowest and fastest cool-

ing rates, respectively. The vertical line is the experimental value

structure of the local tetrahedra approaches indeed the one B¢m Refs. 43, 55, and 5€b) Angles O-O-O, Si-Si-Si, and Si-O-Si
an ideal tetrahedron when the cooling rate is decreased. THg/ the slowest(solid curves and fastestdashed curvescooling
position of this peak is also in good agreement with therates investigated. The vertical lines are the experimental values
position found in experiments, as can be seen from Table jffom Refs. 43, 54, and 56.
In Fig. 13b) we show the distribution function for the
angle between three neighboring oxygen atoRggo, for  three O atoms will change also. This is probably the reason
the fastest and slowest cooling rate investigdttashed and why the second peak is so bropdhe fact that this angle
solid curve, respectively We see thaPgop has two peaks. widens with decreasing cooling rate shows that the two
The first one is relatively sharp and has its maximum aroundheighboring tetrahedra move away from each other, thus
60°. It corresponds to the angle that is formed by three oxymaking the structure less dense. Thus this mechanism is pre-
gen atoms of the same tetrahedr@ng., O#1-O#3-O#4 in sumably the reason for the decrease in density after the den-
Fig. 11). With decreasing cooling rate this peak becomessity anomaly(see Fig. 4 We will investigate this point more
significantly higher and narrower, indicating that the tetrahein Sec. Ill C .
dra become more regular. The second peak is much broader The picture of an opening network with decreasing cool-
than the first one and is located at around 135°. Its positioing rate is also corroborated by the distribution of the Si-
changes from around 128° for fast cooling rates to around-Si angle which is included in Fig. 13 also. We see that
137° for slow cooling rates. This peak corresponds to anglefor fast cooling rates this distribution shows a large peak at
that are formed by an oxygen, on one tetrahedron, a bridging41° whose position moves to 152° for the smallest cooling
oxygen, and a third oxygen on the second tetrahe¢ean, rate, thus indicating that the network is opening up. From
O#1-O#3-0O#2 in Fig. 111 (Note that this angle is not only Table Il we recognize that at the smallest cooling rate the
sensitive to the relative position of the two tetrahedra, i.e.Jocation and the width of the peak are in fair agreement with
the angle Si#1-O#3-Si#2, but also to their relative orientathe experimental values.
tion. If the upper tetrahedron in Fig. 11 is rotated around the The angles O-Si-O, 0O-O-O, and Si-O-Si measure the
axis given by O#3-Si#2, the mentioned angle between thangles between particles that are located on one or two tet-
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TABLE Il. Location and, in parentheses, the full width at half maximum of the angles O-Si-O and
Si-O-Si as determined from the simulation and experiments.

Simulation Experiment
y=4.4x102 K/s Ref. 43 Ref. 54 Ref. 55 Ref. 56
0Sio 108.3°(12.8°) 109.5° 109.7° 109.4°
SiOSi 152°(35.7°) 144°(38)° 142° (26°) 144°, 152° 153°

rahedra. The fourth angle we consider, Si-Si-Si, is, howevemphase that is obtained when the system is cooled from the
defined by three particles that are in the centethofetet-  liquid phase isB-cristobalite>” which has only rings of size
rahedra. Thus this angle is sensitive to the structure of thg. (When the temperature is decreased even further one en-
network on a length scale which is a bit larger. In Fig(d3  ters the phase g8-tridymite and thens-quartz, which have
be show the distribution function for this angle as well. Werings of size 6 and 8.It can be expected that thiecal
see that this distribution shows a small peak at about 60° anstructure of the amorphous network will be similar to the
a large peak between 90° and 120° which seems to be congrystalline network next to the liquid phase. We thus expect
posed of at least two, possibly even three, peaks. The smathat also in the amorphous phase rings of size 6 are the most
peak at 60° was also observed by Riebal?® and in that  frequent ones and Fig. 14 shows that this is indeed the case.
paper it was shown that such an angle occurs when the rings From the figure we also recognize that very short and very
in the network(defined below have length 4. Since such |ong rings occur only seldom and that their frequency dimin-
short rings occur relatively seldofsee beloy, also the cor- ishes with decreasing cooling raféote that we also found
responding peak is small. We also see that the height of thigery few rings(less than 0.5%of size 2 and 9, which are not
peak decreases significantly with decreasing cooling rateshown in the figurd.Thus we find that also the distribution
which is in accordance with the observation discussed belowf the size of the rings, a quantity which characterizes the
that the number of rings of length 4 decreases with decreastructure of the network on the intermediate length scale,
ing cooling rate. Also the main peak shows a noticeable dedepends noticeably on the cooling rate and that this depen-
pendence ory in that its height increases and its width de- dence shows that the structure becomes more ordered, i.e.,
creases with decreasing Because, as mentioned above, thisapproaches the local topology of cristobalite, when the cool-
angle characterizes the structure of the network on an inteiing rate is lowered.
mediate length scale, it is difficult to draw conclusions about The last quantity we investigate with respect to its
the nature of this structure from the cooling-rate dependenceooling-rate dependence is the spectrum of the system. This
of this distribution and thus we do not attempt to do it at thisquantity is interesting for two reasons: First it can be com-
point. pared with the results of experiments and thus it provides a
A different way to characterize the structure of a networkfurther test on how realistic the potential is and second it is
on the intermediate length scale is to consider the distribualso of general interest to study the spectrum in order to gain
tion of the frequency of rings of a given size. A ring is insight into the dynamical behavior of glasses at low
defined as follows: Starting from a Si atom one chooses tweemperatures*?*:58-62
different O atoms that are nearest neighbors. Pick one of The spectrum was determined by computing the
these. In general this O atom will also be a nearest neighbaigenvalues of the dynamical matrix given by
of a second Si atom. From this new Si atom one then picks &m;m,)¥252V({r;})/dr; ,ry 5, wherej andk are particle
new nearest-neighbor O atom, etc. This process is continudddices andx and 8 are the Cartesian componenty,z. In
until one returns to the O atom which is the second one of
the nearest-neighbor O atoms of the first Si atom. In this way
one has constructed a closed loop of Si-O segments. The 0.4

shortest one of these loops is called the ring associated with =~ E//Ei\;g

the original Si atom and the two nearest-neighbor O atoms. g~ K f—«@\ﬁ//%ﬂ

The number of Si-O segments in this loop is called the size 031 n=5 . -
of this ring. Both the distribution with which the so-defined E\g/g%"ﬁ\\y@\y/ggg

rings occur and the distances and bond angles present in
these rings were studied extensively in the paper by Rino 0.2 | ”}LH—M\H\E%\E
et al?° Therefore we restrict ourselves at this place to study '
the cooling rate distribution of the size of the rings.

In Fig. 14 we show the probability that a particle is a

member of a ring with a given size versus the cooling rate. = -

Note that this distribution is not the same as the probability 8 e e e \'\ﬁk’j‘;
to find a ring of sizen, since the two distributions differ by a n=3 e e T
weighting factor ofn. A discussion of the latter distribution 0.0 o o s
is given in Ref. 26. From Fig. 14 we recognize that for all v [K/s]

cooling rates investigated rings of size 6 are the most fre-

quent ones. This fact can be understood by considering the FIG. 14. Probability that a particle is a member of a ring of size
phase diagram of silica. At zero pressure the crystallinen vs the cooling rate.
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FIG. 15. Spectrum of the system for three different cooling X X
from neutron scattering experimeriRefs. 68 and 70

rates: y=1.14x 10'° K/s (bold dashed ling y=7.10x 10" K/s,
and y=4.44x 102 K/s (bold solid ling. The vertical lines give the respect to this property the BKS potential seems to be supe-
location of the peaks as determined in the experiments of Refq,ior to the other potentials investigated so far.
63-65. The part of the spectrum at intermediate frequencies
shows a relatively weak dependence on the cooling rate. This
Fig. 15 we show the so-obtained spectrum. In order not tés not surprising, since most of the modes associated with
crowd the figure too much we present only three of the coolthese frequencies are relatively extended and, since the struc-
ing rates investigatedsee figure caption for detajlsThe ture of the system at larger distances is not affected strongly
spectrum of amorphous silica has also been measured in nebpy the cooling rate, these modes are likely not to be affected
tron and Raman scattering experiments and it was found thddy the cooling rate either. A more detailed investigation of
it shows several peaks. Galeener and Luco¥tgport lines  this point will be published elsewhef@.
at 495 and 1200 cm?, and Kucirkovaand Navril® lines at The spectrum we find at intermediate frequencies seems
460, 802, and 1084 cmt for their Raman scattering experi- to reproduce the experimental spectrum less well than the
ments, and Carpenter and Price find peaks at 400, 810, 107Bigh-frequency part, in that we do not see any prominent
and 1190 cm ! in their neutron scattering experiméntThe  feature in the range 400—500 crhwhich is in disagreement
locations of these peaks are included in the figure as wellvith experiments. This is probably due to the fact that in this
(vertical lines. We see that the spectrum has two main feafrequency range most of the modes involve the movement of
tures. The first one is a double peak at high frequencies anskveral particles; thus they extend over a larger region of
the second one is a broad, relatively featureless mountain apace. Since it is much harder to devise potentials that are
intermediate and low frequencies. It should also be notedble to reproduce correctly the forces also on the
that there is a gap at small frequencies which is a finite-sizéntermediate-range distances, it is not surprising that the
effect, since the acoustic modes with very small frequencieBKS potential does not do well on this point and it shares
have a wavelength that exceeds the size of the simulatiothis flaw with the other models as wéfi*° In passing we
box. also note that the spectrum as determined from a simulation
Let us first discuss the double peak at high frequencieswith the original BKS potential, i.e., without the truncation
We see that the effect of a decreasing cooling rate is t@f the short-range part, gives essentially the same
increase significantly the height of the two peaks as well aspectrun?’ thus showing that the discrepancy between the
to decrease the minimum between the two peaks. Furtheexperiment and our simulation is not due to this truncation.
more, we see a small shift of the positions of the two peaks The low-frequency part of the spectrum of glassy materi-
to higher frequencies when the cooling rate is decreased. Wads has recently been the focus of interest of several investi-
recognize that the location of the two peaks reproduces wetjations since it was found that in this frequency range there
the ones of the experiment and, because of the mentioneskists an excess of harmonic excitation, the nature of which
shift, the accordance between experiment and simulation bés still a matter of debat®°In Fig. 16 we show the low-
comes even better with decreasing cooling rate. Note that frequency part of the spectra for three different cooling rates.
is a nontrivial feature of the model that the spectrum showsSince it is customary in experiments to plot not the density of
at high frequencies the double-peak structure observed istates itself, but the density of states divided by frequency
experiments. Jiet al. have, e.g., found in their simulation of squared, we have done likewise. Also included in the figure
amorphous silica, in which a three-body potential was useds the data from neutron scattering experiments by Buchenau
that at high frequenciethree peaks are preséfitand della et al%®°Note that these curves contain no adjustable param-
Valle and Venuti have showhthat the potential proposed eter. We recognize that qualitatively the results of the experi-
by Tsunekukiet al®® gives two peaks, but that their location ment and the one of our simulation are quite similar. Further-
does not match the one of the experiments as well as we finghore, we see that the agreement between experiment and
it here for the BKS potential. Thus we conclude that with simulation improves with decreasing cooling rate. Because
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of the above-mentioned gap in the density of state, it canintrinsic enthalpy. At the two highest temperatures, its value
however, be expected that even for a significantly smalleis larger than the values obtained from quenches with differ-
cooling rate the discrepancy between experiment and simient cooling rates. This is consistent with the observation that
lation will not disappear. For this to happen it is likely that these two temperatures are larger than the glass transition
one has to investigate system sizes that are significanthemperatures found for the various cooling rae=e Fig. 2
larger than the one used here, which is, however, currentlgor the lowest temperature, i.&,= 3220 K, the value of the

too demanding on computer resources. intrinsic enthalpy is about the same s obtained for the
cooling ratey=3.55x 10" K/s (see Fig. 6. From Fig. 2 we
recognize that for this cooling rate the glass transition tem-
perature is about 3050 K, which is reasonably close to 3220

Having presented in Sec. Il A the cooling-rate depen-K, the considered temperature of the system. Thus we find
dence of the glass transition and in Sec. Ill B the cooling-ratéhat the temperature of the glass transition, as determined in
dependence of various properties of the glass at zero tenthe way described in Sec. Il A, gives a reasonable estimate
perature we use the remaining of this section to investigatéor the temperature at which the system falls out of equilib-
the equilibrium properties of the system at finite tempera- rium with respect to the enthalpy as observable.
tures and to compare these with the ones of the glass. In A similar result is found for the case of the density. In
particular we want to find out at what temperature whichFig. 7 the horizontal lines give the values of the density of
properties of the glass are frozen in or, in other words, howhe relaxed configurations at the three temperatures consid-
the fictive temperature depends on the property. Furtherered. From this graph we recognize that for the two higher
more, we attempt to understand what the microscopic reasdemperatures the density is larger than the ones obtained
is for the occurrence of the density anomaly. from the quenches with the different cooling rates. Thus this

In order to address these questions we saved some of tlig again in accordance with the observation that the glass
configurations of the system during the cooling run with thetransition temperature of these quenches is below these two
slowest cooling rate and analyzed these configurations at seigher temperaturesee Fig. 2 For the lowest temperature,
lected temperatures. In particular we investigated configurai-e., 3220 K, the density we find for the relaxed configura-
tions atT,=7000 K, the highest temperature, Bi=4840 tions is comparable to the one we found for a quench with a
K, the location of the local maximum in the density, and atcooling rate in the range 4.4410'? K/s <y<3.55x 10"
T,=3220 K, the temperature of the local minimum in the K/s, which corresponds to a range of glass transition tem-
density between the temperature of the density maximunperaturegsee Fig. 2 of 2900 K<T,=<3050 K. Thus also in
and zero temperatutgee Fig. 4. In the previous subsection the case of the density the glass temperature is a reasonable
we have concluded that for the smallest cooling rate the glasastimate for the temperature at which the system falls out of
transition temperature is around 2900(%ee Fig. 2 Thus  equilibrium.
we expect that the results at the three selected finite tempera- From Fig. 7 we also recognize that, to within the error
tures are all equilibrium results, provided that the glass tranbars, the intrinsic density at 7000 and 4840 K is the same.
sition temperature does not depend too strongly on the quarurthermore, we see that when the temperature is lowered to
tity investigated (remember that the glass transition 3220 K, the intrinsic density changes relatively strong and
temperatures presented in Fig. 2 are, strictly speaking, onlthen remains almost constant when the temperature is low-
valid for the enthalpy. ered further(as can be recognized from the fact thatde-

The comparison of the structure at finite and zero tempends only weakly ony, when the cooling rate is not too
peratures was done in two ways. One was to compute for thiarge, even though the corresponding glass transition tem-
configurations at finite temperatures the same quantities thgierature is still decreasing in this rangey9f Thus we con-
we have investigated at zero temperature, such as the radielude that the intrinsic density can be considered to be es-
distribution function, and to compare these quantities withsentially constant for temperatures above 4840 K, the
the ones obtained for the glass at zero temperature. The sdocation of the anomaly in the density, and below 3220 K,
ond way was to take these configurations, to determine thethe location of the local minimum of the density, and that the
intrinsic structuré! by relaxing the enthalpy via a steepestintrinsic density changes mainly in the temperature range
descent procedure, to compute also for thedaxedcon-  between the local maximum and the local minimum of the
figurations the quantities that we investigated for the glassdensity. Note that this temperature dependence oirttnia-
and to compare again. Following Stillinger and Weber wesic density is in stark contrast with the one of the density. For
will call in the following the properties of the systeauch the latter we find that it is changing at all temperatures and
as, e.g., the densityhat are obtained from the relaxed con- that it shows a local maximum and a local minimum whereas
figurations “intrinsic” properties(e.g., intrinsic density  the temperature dependence of the former seems to be much
Note that doing a steepest descent proceduiig&t7000 K simpler. Thus it seems that the intrinsic structure of the net-
is equivalent to use an infinitely fast cooling rate. Thus thework changes mainly in the temperature interval between the
so-obtained result can also be related to the ones of the preientioned maximum and minimum.
vious subsection. In order to study this effect in more detail we investigate

The first quantity we start with is the enthalpy. For thethe radial distribution functiog(r). In Fig. 17 we show this
not-relaxed configuration the value Hf{T,) can be read off quantity for the Si-O correlation without the relaxatidfig.
from Fig. 1. The values of the enthalpy for the relaxed con-17(a)] and after the relaxatiofFig. 17b)]. Also included are
figurations are included in Fig. 6 as horizontal lines. We sedhe curves we obtained from the quench with the smallest
that the higher the temperature, the higher the value of theooling rate(curves labeled withf=0 K). From panel(a)

C. Properties of the system at finite temperatures
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TABLE Ill. Location of the first minimum in the radial distri-
bution functiong(r).

20.®@

Tb %ﬁ\l [A] FT%'.% [A] mln [A]
7000 K 3.80 2.50 3.70

1.51 |~ i 4838 K 3.37 2.50 3.60
3220 K 3.37 2.30 3.25

Isio(r)

1.0 A . . -~ - temperaturé’ An exception, however, seems to be the dis-
] tribution function for the O-O pairs. We find that this distri-
! At bution function depends only weakly on temperature for
g o T—7000 K T=<3220 K but then changes strongly when the temperature
0.5 * ' ' * - is lowered toT=0 K in that it shifts its maximum from
4.0 6.0 80 o 10.0

r [A] z=8 to z=6 and becomes peaked much stronger. The rea-
son for this is likely to be the opening of the network with
60 — decreasing temperature. However, why this change is so pro-
nounced and why it takes place in the temperature range
below 3220 K and not as the other quantities in the tempera-
ture range 3220 K= T=<4840 K is unclear.

The distribution functions for the intrinsic coordination
numbers show the usual dependence on temperature in that
they show only a weak temperature dependence for
T=<3220 K andT=4840 K, and a much stronger dependence
in the temperature range 3220KT=<4840 K. Thus also for
these quantities the relevant changes take place in the tem-
123920 K perature range between the local maximum and the local
——— T=4838 K i minimum in the density.

05 i ‘ . T T=7000K The changing of the structure of the network can also be
' 4.0 6.0 80 . 100 studied well with the help of the angles between the various
r[A] atoms, which are shown in Fig. 18. The distributions of the

intrinsic angles aff,=4840 K and afl,=3220 K are very

FIG. 17. Radial distribution functiog(r) for the Si-O correla- similar to the ones atT,=7000 K and T=0 K,
tion atT,=7000 K, T,=4840 K, andT,=3220 K. Also included is  respectively’’ Thus also in this case the intrinsic structure is
theg(r) as obtained from quenching the systenTte0 K with the  essentially independent of temperature frhigher than
smallest cooling ratgla) Without relaxation(b) With relaxation. 4840 K and for temperatures lower than 3220 K. Only in the

temperature range 3220KT=<4840 K does the distribution
we recognize thag(r) depends quite strongly on the tem- of the intrinsic angles change significantly. In contrast to this
perature in that the height of the individual peaks andwe see that the distribution of the angles, i.e., without the
minima become more pronounced. This effect is most promirelaxation, depends oF for the whole temperature range. In
nent for the first-nearest-neighbor pdakset of Fig. 17a)].  particular we find[see Fig. 183)], that the distribution for
This change with temperature takes place throughout thghe angle O-Si-O is very broad at high temperatures and
whole temperature range investigated. This is not the casgecomes gradually narrower whanis decreased. Thus we
with the intrinsicg(r) [panel(b)]. We see that in this case find that the tetrahedra are significantly distorted at high tem-
the curves corresponding 1¢=7000 K andT,=4840 K are  perature, in accordance with the observation that the first-
almost the same. They differ, however, significantly from thenearest-neighbor peak @yo(r) becomes relatively broad at
curve atT,=3220 K, which in turn is very similar to the high temperaturefsee Fig. 17)].
curve forT=0 K. Thus, as in the case of the density, we Also the distribution of the angle Si-O-Si changes signifi-
come also here to the conclusion that the intrinsic structureantly with temperature, Fig. 18). The position of the large
of the network is changing mainly in the temperature rangeeak that is present &t=0 K moves to smaller angles and
between the local maximum and the local minimum of thebecomes much broader when the temperature increases.
density. Similar results were found for thetrinsic radial  Since this angle measures the relative orientation between
distribution functions for Si-Si and O-&,and thus we will  two neighboring tetrahedra, this observation is in accordance
not show these functions here. with the picture of the densifying network, when the tem-

Equipped with the radial distribution functions we can perature is increased. The same conclusion can be drawn
identify the nearest neighbors of every particle via the locafrom the distribution of the O-O-O angle, shown in Fig.
tion of the first minimum in the radial distribution function at 18(c). The position of the broad secondary peak, correspond-
the corresponding temperature. The valuesrﬁ at finite  ing to the angle between an oxygen atom on one tetrahedron,
temperatures are given in Table lll. As in the case of thea bridging oxygen, and an oxygen on a second tetrahedron
radial distribution function we find that these distribution (O#1-O#3-0#2 in Fig. 1)1 moves to smaller angles with
functions show a relatively regular dependence onincreasing temperature, indicating that the two tetrahedra
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FIG. 19. Distribution of the size of the rings &j,=7000 K,
T,=4840 K, andT,=3220 K. Also included is the distribution
function as obtained from quenching the systerii 60 K with the
smallest cooling rate. Main figure: without relaxation. Inset: with
relaxation.

The last structural quantity we investigate is the distribu-
tion of the size of the rings which is shown in Fig. 19. We
see that also in this case the distribution of the intrinsic size
of the rings(see the inset of Fig. 2%lepends significantly on
the temperature only in the temperature range 3220 K
<T=4840 K. The distribution function of the ring size with-
out the relaxation shows, however, a temperature depen-
dence that extends throughout the whole temperature range
investigated. We see that this distribution becomes signifi-
cantly broader when the temperature is increased and that the
main change is that the short rings become more frequent.
We also note that at high temperatures we find some “rings”
that have a sizea=1, by which we denote “rings” that are
not closed, i.e., which are dangling bonds. These types of
rings disappear when the temperature is less than 4840 K,
showing that from an energetic point of view such configu-
rations are unfavorable.

The final quantity we studied was the spectrum of the
system, which is shown in Fig. 20. The intrinsic spectrum,
shown in Fig. 20a), shows that the main effect of finite
temperature is to smear out the double-peak structure at high
frequencies and to fill up the gap between this double-peak
structure and the broad mountain at lower frequencies. The
main change in the form of the spectrum takes again place in
the temperature interval 3220 & T,<4840 K.

The spectrum at finite temperature is quite different from
the intrinsic one, since the dynamical matrix has also nega-
tive eigenvalues. It is customary to plot the distribution of
the square root of these negative eigenvalues on the negative

(?requency axi§! We see that at finite temperatures the

double peak at high frequencies is reduced to a shoulder of
the large mountain at lower frequencies. This is the case
even for T,=3220 K, i.e., the temperature for which we

move closer to each other. At the same time the main peakave found that most structural properties of the system are
corresponding to the angle of three oxygen atoms on th@ery similar to the ones af=0 K. Thus we find that this

same tetrahedron, decreases its height and becomes broadBmamic quantity shows a much stronger temperature depen-
showing that the tetrahedra are more distorted at high terrdence at low temperatures than the structural quantities. The

peratures.

peak in the distribution at negative frequencies, however,
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suitable to model vitreous silica produced via a quench in
temperature.

In our work we first focused on the macroscopic quanti-
ties, in order to see whether the cooling-rate dependence of
these quantities show a similar behavior as the ones observed
in real experiments. We found that this is indeed the case, in
that, e.g., the dependence of the glass transition temperature
on the cooling rate is in qualitative accordance with the one
of real materials. If this observed cooling-rate dependence is
extrapolated to experimental cooling rates, this accordance
seems also to be correct in a semiquantitative way.

We also observed that, if the cooling rate is sufficiently
small, the density shows an anomalous behavior in that it has
a maximum at around 4800 K. Such an anomaly is also
found in real silica, although at a significantly smaller tem-
perature(1820 K). This shows that with respect to this phe-
nomenon the BKS potential is able to give at least a qualita-
tively correct description of noncrystalline silica.

By investigating the properties of the glass at zero tem-
perature we find that the enthalpy, the density, and the ther-
mal expansion coefficient depend significantly on the cooling
rate. The densities we find are in agreement with the ones of
real silica and an extrapolation of the thermal expansion co-
efficient to experimental cooling rates is also consistent with
the experimental values for this quantity. Thus we find also
in this case that the BKS potential is a good model for real
silica glass.

After having made sure that the BKS potential gives a
reasonably good description of theacroscopigroperties of
amorphous silica and that our simulations are able to repro-
duce the cooling-rate dependence of the glass transition at
least in a qualitative way we thus could move on to investi-
gate how thamicroscopicproperties of the glass depend on
the cooling rate. We found that the radial distribution func-

and T,=3220 K. Also included is the spectrum as obtained fromT[Ions showed a pronounced dependence on the cooling rate

quenching the system =0 K with the smallest cooling rate. The in that t;e _|tr;]d(|jV|duaI peaks bl_ecometz &gnlfmfﬂ:_ﬂy mé)rt?] p;O't
vertical lines gives the location of the peaks as determined in th ounced wi ecreasing cooling rate. =-rom this an etac

experiment of Refs. 63—6%a) With relaxation.(b) Without relax- that the firgt s_harp diffra(_:tion peak in the structure factor also
ation. The distribution for negative frequencies corresponds tNOWs & significant cooling-rate dependence towards becom-
negative eigenvalues of the dynamical matrix. ing more pronounced with decreasing cooling rate, we con-
clude that the structure of the system at short and intermedi-
shows a regular dependence on temperature, thus being moate distances becomes more prdered. This _cor)clu.sion is also
similar to the structural quantities ' USrroborated by our observation that the distribution of the
) bond angles becomes more structured and that the various
coordination numbers show the tendency that the basic units
in the network become more ideal, i.e., to become regular
tetrahedra. That also the intermediate-range order of the
We have presented the results of a large scale computglass increases with decreasing cooling rate can also be in-
simulation in which we investigated how the properties offerred from the observation that in the distribution of the size
silica glass depend on the cooling rate with which the glasef the rings the frequency of rings of size 6 increases with
was produced. Experiments in which such cooling rate dedecreasing cooling rate, which shows that lineal structure
pendences were investigated have focused, so far, only avf the system approaches the oneBa€ristobalite.
the macroscopigroperties of glasses, such as the density or Also the spectrum of the system, as computed from the
the glass transition temperatufeOne of the main goals of eigenvalues of the dynamical matrix, shows a noticeable de-
our investigation was to study how timeicroscopicproper-  pendence on the cooling rate in that the two main peaks at
ties of the glass are affected by the cooling rate and see hohigh frequencies become more pronounced whes low-
their cooling-rate dependence compares with the one of maered. This shows that the neighborhoods of the individual
roscopic properties. The second goal of our study was to testtoms show less variation from atom to atom with decreasing
whether the silica potential proposed by van Beest, Kramermooling rate. In addition we find that the location of these
and van SantefBKS), which so far has only been used to two peaks is very close to the one observed in experiments,
describe crystalline and pressurized amorphous silica, is alstemonstrating that the BKS potential is reliable with respect

IV. SUMMARY AND CONCLUSIONS
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to this quantity as well. Furthermore, we have shown thabe understood from a microscopic point of view by a change
also at low frequencies the spectrum is in fair agreement witlin the distribution of the various angles which lead to an
experiment. opening up of the network. The nearest-neighbor bond dis-

Finally we investigated how the structure of the glass atances, however, do not change significantly in this tempera-
finite temperatures differs from the one at zero temperaturéure range, showing that the relative positions of the tetrahe-
in order to find out how the glass transition is affecting thedra among each other are more important for the anomaly
temperature dependence of various quantities. We find thdhan the geometry of the tetrahedra.
the radial distribution functions show a smooth dependence To conclude we can say that we have shown that, similar
on temperature, thus showing that the glass transition is nab fragile glass former¥ also the properties of strong
accompanied by a dramatic change in this quantity. This iglasses show a noticable dependence on the cooling rate with
the case for most other structural quantities consideredvhich the glass was produced. In particular we showed that
However, if we look at thentrinsic quantities, we note that such dependences can affect the microscopic quantities much
they show a much more pronounced temperature depemnore than they affect the macroscopic ones and that it might
dence. Roughly speaking we can say that above and belotherefore also be interesting to investigate in real experi-
the glass transition the intrinsic quantities are essentially inments how microscopic quantities depend on the cooling
dependent of temperature, that they change, however, sigate. In addition we have shown that the two-body potential
nificantly in the vicinity of the glass transition. This shows proposed by van Beest al. for crystalline silica is also able
that these quantities are likely to be a sensitive indicator foto give a surprisingly good description of amorphous silica,
when the system is undergoing the glass transition in accothus making it possible to investigate these types of glasses
dance with the findings of Stillinger and Webkand Jms-  in a relatively efficient manner.
son and Andersef?.

From the temperature dependence of the various struc-
tural quantities we gain some understanding on the nature of
the density anomaly. We find that the network becomes more We thank C. A. Angell for valuable discussions, U.
compact when the temperature is lowered from high temBuchenau for permitting us to reproduce his data before pub-
peratures to 4800 K, the temperature at which the anomaly ikcation, and S. Klaumozer for informing us on experiments
observed. This shrinking is a complicated process in whicton ion bombardment. K. V. thanks Schott-Glaswerke Mainz
certain distances increase, whereas others decrease diodfinancial support through the Schott-Glaswerke-Fond and
where also the distribution of the various angles changethe DFG, through SFB 262, for financial support. Part of this
significantly with temperature. When the temperature is dework was done on the computer facilities of the Regionales
creased even further the density decreases again which c&echenzentrum Kaiserslautern.
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