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We study heterogeneities in a binary Lennard-Jones system below the glass transition using molecular
dynamics simulations. We identify mobile and immobile particles and measure their distribution of vibrational
amplitudes. For temperatures near the glass transition the distribution of vibrational amplitudes obeys scaling
and compares reasonably well with a mean-field theory for the amorphous solid state. To investigate correla-
tions among the immobile and mobile particles we identify clusters and analyze their size and shape. For a
fixed number of immobile particles we observe that the immobile particles cluster more strongly together as the
temperature is increased which allows the particles to block each other more effectively and to therefore stay
immobile. For the mobile particles, on the other hand, the clustering is most pronounced at low temperatures,
indicating that mobility at low temperatures can only be sustained in cooperative motion.
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I. INTRODUCTION

If a liquid is cooled and crystallization is avoided, one
obtains a supercooled liquid. Upon further cooling the sys-
tem falls out of equilibrium and results in an amorphous
solid—i.e., a glass. During this transition from liquid to su-
percooled liquid to glass the dynamic properties change dras-
tically and they therefore have received much attention. Most
studies are concerned with the supercooled liquid, for which
the existence of dynamic heterogeneities has been well es-
tablished �1�. We focus in this paper instead on the glass
phase.

The glassy state of matter is by definition strongly inho-
mogeneous. Different particles have different neighborhoods
and consequently different dynamics. One tool to diagnose
the heterogeneities are the vibrational amplitudes �di

2�. In
contrast to a perfect crystal these vary strongly from site to
site in the glassy state. A simple way to demonstrate the
heterogeneities is to pick out the 5% particles which have the
smallest and largest amplitudes. Their vibrational amplitudes
are plotted in Fig. 1 for a binary Lennard-Jones mixture �for
details see below�. The most striking observation is the
spread in the data which strongly increases with increasing
temperature. Whereas for T=0.15 the �di

2� of the 5% fastest
particles is approximately 5 times the �di

2� of the 5% slowest
particles, this grows to a factor of approximately 50 close to
the glass transition temperature. Thus, heterogeneities are
present in the glassy state for all temperatures and become
increasingly more pronounced as the glass transition tem-
perature is approached from below.

Our goal is to characterize these heterogeneities quantita-
tively. Obviously the mean of the vibrational amplitudes is
not conclusive and we therefore investigate instead the full
distribution of vibrational amplitudes to characterize the lo-
cal dynamics. We compute this distribution and show that, in
the vicinity of the glass transition, it approximately obeys

scaling. We furthermore compare it to a mean-field calcula-
tion for a different amorphous solid �2,3�, the gel, and find
surprisingly good agreement.

To further characterize dynamic as well as time-persistent
heterogeneities we use various definitions to identify mobile
and immobile particles. We identify clusters of immobile and
mobile particles where particles are defined to be connected
if their relative distance is smaller than the position of the
first minimum of the pair correlation function. To quantify
the shape of these clusters we analyze their connectivity
properties in analogy to covalently bonded glasses. We de-
termine the average size of the clusters, the average coordi-
nation number, and the spatial extent as measured by the
radius of gyration. In addition to the average values we also
compute the distribution of coordination numbers as well as
ring statistics.

The majority of previous work on dynamic heterogene-
ities are studies of mobile particles above the glass transition.
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FIG. 1. �Color online� Vibrational amplitude �di
2� as a function

of temperature for the 5% fastest and 5% slowest particles. See Fig.
5 for an enlargement of �di

2��T� for the 5% slowest A and B
particles.
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They find that mobile particles form stringlike clusters �4–8�
which grow in length and size with decreasing temperature
�9–11�. Immobile particles, on the other hand, do not form
strings �5,6�. In this paper we mostly study clusters of immo-
bile particles below the glass transition and quantify their
size and shape as described above.

The paper is organized as follows. In Sec. II we give
details of the simulation. Subsequently several different defi-
nitions of immobile particles are introduced and discussed
�Sec. III�. In Sec. IV we present our results, first for the
fraction of immobile particles �A�, next for the vibrational
amplitudes �B�, and finally the cluster analysis �C�. We sum-
marize our results and present conclusions in Sec. V.

II. SIMULATION DETAILS

Our system is a binary Lennard-Jones mixture of 800 A
and 200 B particles with the same mass. The interaction po-
tential between particles i and j of type � ,�� �A ,B� and at
positions ri and r j is

V���r� = 4���	
���

r
�12

− 
���

r
�6� , �1�

where r= 
ri−r j
 and �AA=1.0, �AB=1.5, �BB=0.5, �AA=1.0,
�AB=0.8, and �BB=0.88. We truncate and shift the potential
at r=2.5���. From previous investigations �12� it is known
that this system is not prone to crystallization and demixing.
In the following we will use reduced units where the unit of
length is �AA, the unit of energy is �AA, and the unit of time

is �m�AA
2 / �48�AA�.

We carry out molecular dynamics �MD� simulations using
the velocity Verlet algorithm with a time step of 0.02. The
volume is kept constant at V=9.43=831, and we use periodic
boundary conditions. Previous simulations �12� showed that
the system falls out of equilibrium in the vicinity of Tg
=0.435. We are interested in the glassy phase and hence
study the system well below and close to this temperature in
the range 0.15�T�0.43.

As described in Sec. IX of �13� we equilibrate the system
at constant temperature T=3.0 to obtain ten independent con-
figurations which are at least 5�104 time units apart. This
corresponds to about 104 times longer than the longest relax-
ation time determined at T=3.0 �see �12��. The temperature
is kept constant by replacing the velocities of all particles by
new velocities drawn from the corresponding Boltzmann dis-
tribution every 50 time steps. Each of these configurations is
then cooled linearly in time t �T�t�=T0−�t� from T0=3.0 to
Tinit=0.5 with �=1.25�10−5 �14�. After an �NVT� equilibra-
tion at T=0.5 of 2�105 time units �corresponding to about
100 times the longest relaxation time �12�� we then instanta-
neously quench the system to the investigated temperatures
T=0.15, 0.20, 0.25, 0.30, 0.35, 0.38, 0.40, 0.41, 0.42, and
0.43. We anneal the system at each temperature with �NVT�
simulations for 2000 time units and then run the production
runs with �NVE� simulations for 105 time units. Since the
relaxation times � are much larger than the waiting time
before the production runs ���8�105 at T=0.446�, we ex-
pect to find aging effects as they have been studied in detail

for the same Lennard-Jones system �16,17� and as they have
been found in related work �13,18�. In this paper we do not
aim for a systematic investigation of aging effects. However,
we have analyzed a second set of simulation runs with a
different history in order to get a rough estimate of the ef-
fects of aging. The second set of runs start from well equili-
brated configurations at Tinit=0.446. After an instantaneous
quench to T=0.15 the system is annealed for 2000 time units
followed by a �NVT� run of also 2000 time units. The tem-
perature is then raised to T=0.2, again annealed with �NVT�
and �NVE� runs each of 2000 time units, and raised to T
=0.25 etc. The production runs are for 105 time units and are
for each investigated temperature following the respective
�NVE� simulations. For more details see �13,18�

III. DEFINITION OF IMMOBILE AND MOBILE
PARTICLES

We study heterogeneities below the glass transition and
focus on how the particles are increasingly frozen in as the
temperature is lowered. Even though the system is obviously
very inhomogeneous �see Sec. I�, it is not obvious how to
quantify the characteristic features of these heterogeneities.
One possibility is to study the extremes, the most mobile and
the most immobile particles. In most of this paper we con-
centrate on the immobile ones; we study their organization
into clusters and the size and shape of these clusters.

Using four different definitions of immobility we are able
to test if the resulting dynamical behavior is dependent on
the precise definition of immobility. For two of the defini-
tions we characterize the mobility of a particle by its vibra-
tional amplitude �18�

di
2 = 
ri − rī
2, �2�

where the overbar denotes a time average over the whole
simulation run. Our first definition of immobility �I� defines
every particle i to be immobile for which

di
2 � dcut

2 . �3�

The second definition of immobility �II� �18� identifies as
immobile particles a fixed percentage of A particles and
separately a fixed percentage of B particles with the smallest
di

2. This allows us to similarly study the most mobile par-
ticles with the largest di

2.
The third and fourth definitions of immobility are based

on recent work on single-particle motion �13�. As sketched in
Fig. 2�a�, we define a particle i to undergo a jump if its

FIG. 2. Sketch of a particle trajectory to illustrate the definition
of irreversible and reversible jumps.
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change in average position 	Ri is significantly larger than its
fluctuation �i �	Ri
�20�i� �19�. We distinguish irreversible
and reversible jumps where in the latter case the particle
returns during the simulation run to one of its former average
positions �for more details see �13��. We call all particles
immobile which are not undergoing any jumps �III� or which
are not irreversible jumpers �IV�.

Note that our definitions of immobile particles refer to the
whole simulation run, because we want to investigate those
structures which persist on the longest time scale, set by the
length of the simulation run.

IV. RESULTS

A. Fraction of immobile particles

Let us first see how many particles are immobile accord-
ing to the definitions I, III, and IV. Figures 3 and 4 show that
the fraction of immobile particles,

Q = �number of immobile particles�/�number of particles� ,

�4�

approaches 1 for very low temperatures and drops signifi-
cantly for temperatures near the glass transition. Q�T� de-
pends quantitatively on the definition of immobile: the larger
dcut

2 , the steeper is the drop of Q. The smallest cutoff dcut
2

=0.01 corresponds to the Lindemann criterion and gives rise
to significant deviations in the results for Q�T� as compared
to the other definitions of immobility. Apparently the frozen
structure can be sustained with a considerable fraction of
particles whose vibrational amplitude is larger than sug-
gested by the Lindemann criterion—e.g., roughly 25% of the
A particles at T=0.3. This is consistent with the broad scatter
of vibrational amplitudes in the glassy phase that we shall
discuss below.

The qualitative behavior is the same for all definitions of
immobility and in particular the temperature where Q goes to
zero is rather insensitive to the details of the definition of
immobile particles �unless the cutoff is chosen too small; see
above�. Hence Q gives a rough estimate of Tg via the ex-
trapolation of Q�T� to zero. Similarly the history of the simu-
lation runs has a quantitative influence on Q�T�: larger initial
temperature �Tinit=0.5� results in fewer immobile particles,
consistent with Fig. 22 of �13�. The qualitative behavior,
however, is not only independent of the precise definition of
immobility but also independent of the history of the simu-
lation runs.

B. Vibrational amplitude

One possibility to extract the various length scales of the
glassy state is the vibrational amplitudes �di

2�. Figure 1
shows �di

2� as a function of temperature T for the 5% par-
ticles with largest di

2 �mobile, solid symbols� and the 5%
particles with smallest di

2 �immobile, open symbols�. Here �·�
denotes an average over the subset of particles under consid-
eration �mobile or immobile� and over initial configurations
�20�. The remarkable spread of �di

2� in Fig. 1 illustrates the
increasing importance of heterogeneities when the glass tran-
sition temperature is approached from below �see Sec. I�. In
the inset of Fig. 5 we have included linear fits through the
origin, which would correspond to the dynamics of a har-
monic solid. We find for the 5% immobile particles �di

2��T�
for T�0.25 good agreement with this line fit. For larger
temperatures, however, the immobile particles display anhar-
monic dynamics. On the other hand, the immobile particles
of definitions I, III, and IV include at low temperatures al-
most all particles �see Figs. 3 and 4�, and the linear fits
through the origin are therefore only good approximations
for T�0.2 which corresponds roughly to the crossing of the
line of the Lindemann criterion �see inset of Fig. 5�.

The �di
2� of immobile particles using definitions I, III, and

IV are slightly larger but comparable to the �di
2� using defi-

nition II �see Fig. 5�. We find for all definitions of immobility
the same temperature dependence. Similarly the analogous
figures for Tinit=0.446 are qualitatively the same.

To investigate further the heterogeneities we show in Fig.
6 the distribution of the vibrational amplitude normalized by

FIG. 3. The fraction of immobile particles Q as a function of
temperature T using definition I for immobility. Q�T� is given both
for A and B particles separately and for dcut

2 =0.2 and dcut
2 =0.01. The

simulations are with initial temperature Tinit=0.5.

FIG. 4. Same as Fig. 3, but for definitions III and IV, for A and
B particles and for different initial temperatures.
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its average. The distribution of vibrational amplitudes has
been predicted for the amorphous solid which results either
from crosslinking macromolecules �2� or from cross-linking
particles �3�—i.e., the gel state. In that context Q corre-
sponds to the gel fraction and �di

2� to the localization length
squared. It was shown that the distribution of localization
length obeys scaling in the critical regime of the transition
from the fluid to the amorphous solid state which is a
second-order equilibrium phase transition. The scaling
function

���� = �
 1/di
2

�1/di
2�
�

has been computed in mean-field theory and is given as the
solution of

�1 − 2������ = �2���� + �
0

�

d�1���1���� − �1� . �5�

The theoretical results are in good agreement with results
from numerical simulations of cross-linked macromolecular
melts �21�.

The two systems, binary Lennard-Jones glasses and cross-
linked polymeric melts, have completely different micro-
scopic dynamics, and the nature of the glass transition, if it
exists, is not understood in contrast to the gelation transition.
Nevertheless, it is an interesting open question to see
whether the distribution of localization lengths P�di

2� obeys
scaling close to the glass transition and how it compares to
the universal function of the gelation transition. The numeri-
cal solution to Eq. �5� is included as bold line in Fig. 6 which
shows

P�di
2/�di

2�� = �����
�di

2�
di

2 .

We find that indeed for temperatures T
0.38, P�di
2� depends

on temperature only through the average squared localization
length and that the normalized distribution compares reason-
ably well with the universal function of the gelation transi-
tion, as predicted by mean-field theory �2,3�. This agreement
with theory is independent of the definition of immobility
and independent of the history of initial configurations.

C. Cluster analysis

The vibrational amplitude has given us an estimate for the
length scale of single-particle motion. In the rest of the paper
we investigate how the immobile and mobile particles are
spatially correlated with each other and how they are orga-
nized in clusters.

To do so we use definitions I–IV of immobility �see Sec.
III� to select a subset of particles of the system. We stress
again that immobility defined in this way is a time-persistent
feature �on the time scale of the simulation run�. We then
choose a particular instant of time—the beginning of each
production run—to identify nearest-neighbor connections
among this subset of particles: particle j is defined to be a
neighbor of particle i if their distance 
rij
= 
ri−r j
 is smaller
than the position of the first minimum rmin of the correspond-
ing radial pair distribution function of the complete system
�rmin=1.4 for AA, 1.2 for AB, and 1.07 for BB independent of
temperature�.

This definition of nearest-neighbor connections gives rise
to K distinct clusters of immobile particles, with two par-
ticles belonging to the same cluster if they are connected.
The clusters are numbered by k=1,2 , . . . ,K and we denote
by Nk the kth cluster with Nk particles. The clusters of mo-
bile particles are defined in complete analogy. However, in
this case the identity of the clusters refers to a particular
snapshot—usually the initial instant of time. In contrast the
clusters of immobile particles are likely to be time-persistent
structures.

To get a first idea of the organization of immobile par-
ticles into clusters we simply determine

FIG. 5. �Color online� Same as Fig. 1 for immobile particles
using definitions I–IV and for A and B particles. The inset shows an
enlargement for low temperatures with linear fits through the origin
and a line at �di

2�=0.01 for the Lindemann criterion.

FIG. 6. Distribution of the normalized vibrational amplitude
compared to a mean-field theory �3�. For the simulation data the
definition III for immobility has been used and the distribution is
shown for A particles.
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�s� =� 1

K
�
k=1

K

Nk� , �6�

i.e., the total number of immobile particles, Nimmob=�k=1
K Nk,

divided by the total number of clusters K, averaged over
initial conditions. Here and in the following �·� denotes an
average over initial conditions. In Fig. 7 we show �s� �open
symbols� for the definitions I, III, and IV together with �sbcl�
�solid symbols�, where sbcl=Nk,bcl is the number of particles
in the largest cluster. At the lowest temperatures almost all
particles are immobile �see Figs. 3 and 4� and connected, so
that there is only one large cluster and �s�= �sbcl� is approxi-
mately given by the total number of particles. As the tem-
perature increases the fraction of immobile particles de-
creases and the number of clusters decreases simultaneously
so that �sbcl�
 �s�. Definition IV �“no irreversible jump”�
gives rise to a larger �s� for immobile particles than defini-
tion III �“no jump”�, since definition IV excludes fewer par-
ticles from the subset than definition III—namely, only irre-
versible instead of also reversible jumpers.

To disentangle the effects of spatial rearrangements and
changing number of immobile particles, we use definition II
with a fixed number of immobile particles.

Figure 8 shows �sbcl� for the 5% most mobile and 5%
most immobile particles as a function of temperature. In the
temperature range 0.25�T�0.4 the 5% immobile particles
cluster increasingly more together with increasing tempera-
ture. We interpret this such that immobile particles manage
to stay immobile at larger temperatures by forming each oth-
er’s cages most successfully by clustering together. The 5%
most mobile particles, on the other hand, cluster more to-
gether at lower temperatures. A more cooperative motion al-
lows the particles to be mobile at low temperatures.

This picture gets further support from the observation that
with increasing temperature the number of clusters �K� in-
creases for the 5% most mobile particles and decreases for
the 5% most immobile ones �see Fig. 9�. This temperature

dependence is qualitatively the same for simulations with
different histories �Tinit=0.446 and Tinit=0.5�.

Another interesting question concerns the percolation
properties of clusters of either immobile or mobile particles.
We vary the percentage p of immobile particles and thereby
the clusters Nk as well as the total number of clusters K. For
a fixed temperature T we compute the fraction Pperc of the
ten independent configurations with a percolating cluster of
immobile particles. We define a cluster to be percolating if its
maximum extension r�=max
ri�−rj�


 between any pair of
particles i and j satisfies r�
8.0 for any direction �
� �x ,y ,z� �22�. As can be seen in the inset of Fig. 10 this
fraction rises sharply from zero at a critical value pc, which
is approximately independent of temperature. A central quan-
tity from percolation theory is the average cluster size,
defined as

FIG. 7. Average number of cluster members s as a function of
temperature. Shown are an average of s over only the biggest clus-
ter of each independent configuration �sbcl� and an average over all
clusters �s� are shown for definitions I, III, and IV.

FIG. 8. Same as Fig. 7 but for definition II and only for
�sbcl�.

FIG. 9. Average number of clusters �K� as a function of tem-
perature using definition II.

HETEROGENEITIES IN THE GLASSY STATE PHYSICAL REVIEW E 72, 041507 �2005�

041507-5



�S��p� =��
s

s2ns�p�

�
s

sns�p� � with ns = �
k=1

K

�Nk,s. �7�

Percolation theory predicts a divergence of �S�p��, as the
percolation transition is approached from either side �exclud-
ing the percolating cluster for p
 pc�. In our case we observe
a strong increase of �S�, a maximum around pc, and a sub-
sequent decrease for p
 pc �see Fig. 10�. The strong increase
of �S� around pc is reminiscent of a percolation transition
with, however, a threshold value that is significantly lower
than the corresponding value for hard spheres �23�. This may
be due to the strong correlations between immobile particles
in addition to the correlations due to the interaction potential
V�r�. Furthermore, our analysis is severely hampered by the
small size of our sample, which percolates much easier than
a larger sample, so that pc is underestimated.

The spatial extent of clusters of immobile and mobile
particles can be quantified with the help of the radius of
gyration. The latter is defined for a particular cluster Nk:

RG�Nk� =� 1

Nk
�

i�Nk

�ri − rc.m.�2, �8�

with the center of mass of the cluster

rc.m. =
1

Nk
�

i�Nk

ri. �9�

To study the scaling of RG as a function of the number of
particles in a cluster s, we show in Fig. 11 a log-log plot of
RG�Nk� versus s�Nk� for all clusters Nk of all independent
configurations. We find that approximately RG�s1/df with a
fractal dimension df �1.8 �and similarly for the definitions
II–IV�. If the clusters were approximately straight lines, one
would expect df =1.0; if they were compact, df =3.0. Our

result points to fractal structures; however, this should be
taken with a caveat since the clusters are too small to observe
true asymptotic scaling behavior.

Next, we investigate the connectivity within single clus-
ters. Since two sites have been defined to be connected if
sufficiently close in space, the connectivity is not a purely
topological feature, but gives us information about the shape
of the clusters. A convenient measure, which does not require
a large variety of cluster sizes, is the coordination number z.
We define the average coordination number z�Nk� of a clus-
ter Nk as

z�Nk� =
1

Nk
�

i�Nk

zi, �10�

where zi is the number of neighboring particles j�Nk of
particle i. Figure 12 gives a plot of �zbcl�= �z�Nbcl��, the av-
erage number of neighbors of particles in the biggest cluster
averaged over independent initial configurations. We observe

FIG. 10. The average cluster size �S� as a function of percentage
p using definition II for immobility. The average is over all nonper-
colating clusters and over independent initial configurations. The
inset shows the fraction of percolating configurations as a function
of p.

FIG. 11. Log-log plot of the radius of gyration, RG, as a function
of the number of cluster members s using definition I for immobil-
ity. The line is a linear fit with slope 0.55.

FIG. 12. Average coordination number of members of the big-
gest cluster �zbcl� as a function of temperature using definition II.
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that �zbcl� is increasing for the 5% immobile particles with
increasing temperature, independent of the history of the
runs. The immobile particles block each other at larger tem-
peratures by clustering more together and by forming more
compact clusters. Clusters of mobile particles, on the other
hand, become more elongated with increasing temperature.
Although �zbcl� is not equal to 2 as it would be for strings,
�zbcl� approaches 2.5 as T→Tg. This is reminiscent of the
results �9–11�, where increasingly stringlike motion for mo-
bile particles was observed as the glass transition is ap-
proached from above. �The authors of �9–11� use a slightly
different definition of mobility than in this paper and define a
string via velocity-velocity correlations.�

More information about the connectivity and the shape of
the cluster can be found from the distribution of coordination
numbers of the particles in the biggest cluster for each initial
configuration P�zi,bcl�= P�zi�Nbcl

�. Figure 13 illustrates that
for low temperatures z=3 and z=2 are the most common
coordination numbers of the mobile particles in the biggest
cluster. However, for high temperatures z=2 dominates and
the variance of the distribution is smaller, indicating string-
like clusters. In the case of the 5% immobile particles, on the
other hand, the peak is at z=4 and the variance of P�zi�Nbcl

�
is strongly increasing with increasing temperature �see the
inset of Fig. 13�. This indicates increasingly more compact
clusters with increasing temperature.

We finish our cluster analysis with ring statistics. Whereas
ring analysis usually is applied to network forming glasses, it
is here applied to the binary Lennard-Jones system, which is
a fragile glass former �24�. In the following we call any path
a set of nearest-neighbor connections. The most commonly
used method, introduced by King �25�, searches for rings by
finding for each particle and any pair of its neighbors the
shortest path between them. As pointed out by Franzblau
�26�, this definition has serious disadvantages such as not
counting certain “intuitive” rings, which leads Franzblau to
the “shortest-path” �SP� criterion: an SP ring contains for
each pair of particles in the ring the shortest path between the

pair in the cluster under consideration. We use the SP crite-
rion and search algorithm of Franzblau to find within the
largest cluster all rings r=1,Nr,bcl each of size nr—i.e., with
nr connections.

Figure 14 shows the distribution P�nr� for the biggest
cluster of the 5% immobile and 5% mobile particles. We find
that rings are dominantly made up of three particles; only a
few rings are longer. This means that in the case of the
“stringier” mobile particle clusters, the clusters are mostly
not closed rings.

In the case of immobile clusters using definitions I, III,
and IV larger clusters are formed, leading to a larger average
ring size

�nbcl� =� 1

Nr,bcl
�
r=1

Nr,bcl

nr� �11�

�see Fig. 15�. For low temperatures almost all particles are
members of the biggest cluster of immobile particles and

FIG. 13. �Color online� Distribution of coordination numbers
P�zi,bcl� of the 5% fastest particles in the biggest cluster for simu-
lations with Tinit=0.5. The inset shows P�zi,bcl� for the 5% slowest
particles for simulations with Tinit=0.446.

FIG. 14. Distribution of ring sizes P�nr� within the largest clus-
ter of each independent configuration using definition II.

FIG. 15. Average ring size �nbcl� as a function of temperature
using definitions III and IV and the comparison of �n� for the com-
plete system �100%�.
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�nbcl� is therefore comparable to �n� of the whole system. For
larger temperatures the clusters become more compact and
on average larger ring sizes occur.

V. CONCLUSIONS

We investigate a binary Lennard-Jones system below the
glass transition. To study the inhomogeneous structure of the
glassy state quantitatively we focus on the most mobile and
immobile particles. Since the identification of these is not
unique—at least not in a simulation run of finite length—we
test different definitions of immobility. The first two defini-
tions are based on the vibrational amplitude, and the last two
define a particle to be immobile if it is not jumping.

The length scales of single-particle motion vary strongly
among the particles, giving rise to a broad distribution of
vibrational amplitudes for mobile and immobile particles.
The range of vibrational amplitudes increases as the glass
transition temperature is approached from below: The system
not only becomes more heterogeneous with increasing tem-
perature, but also the range of length scales extends to much
larger scales in the vicinity of the glass transition than at low
temperatures. Focusing on the immobile particles only, we
observe the distribution of vibrational amplitudes to follow a
scaling plot close to the glass transition. It even compares
reasonably well with a mean-field theory for the amorphous
solid state, developed in the context of the gelation transi-
tion. Tentatively this may be taken as evidence for the re-
cently suggested picture of the more general jamming tran-
sition �27�, including both the gel transition and the glass
transition.

To characterize the spatial arrangement and correlations
among immobile and mobile particles, we identify clusters of
particles, which are defined to be connected if their relative
distance is smaller than a threshold value, given by the first

minimum of the pair correlation function. Whereas for the
immobile particles these clusters are approximately time per-
sistent and hence characterize the static heterogeneity, the
clusters of mobile particles are relevant for the dynamic het-
erogeneity of the glassy state.

If immobility is defined by the vibrational amplitudes or
the jump characteristics, then the number of immobile par-
ticles increases strongly as the temperature is lowered. This
effect dominates the statistics of cluster number, size, and
shape. Baljon et al. �28� find similar results for thin polymer
films by looking at the percolation probability of immobile
monomers as a function of temperature. It is instructive to
keep the number of immobile and mobile particles
constant—namely, the p% particles with the smallest and
largest vibrational amplitudes. The p% mobile particles, on
the other hand, cluster more together at low temperatures and
form more elongated stringlike clusters at larger tempera-
tures. Similar strings have been found for the same system
above the glass transition �4,5� and for a similar system
above and slightly below the critical temperature �7�. These
simulations and our results as well as experiments �11� point
to stringlike clusters of mobile particles which grow close to
the glass transition temperature, both when approached from
above and when approached from below the glass transition.
We find that with increasing temperature the p% immobile
particles cluster more strongly together and form more com-
pact clusters which allows the particles to block each other
more effectively and to therefore stay immobile.
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