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Molecular dynamics computer simulations are used to study the aging dynamics of SiO2 �modeled by the
BKS model�. Starting from fully equilibrated configurations at high temperatures Ti� �5000 K,3760 K�, the
system is quenched to lower temperatures Tf� �2500 K,2750 K,3000 K,3250 K� and observed after a
waiting time tw. Since the simulation runs are long enough to reach equilibrium at Tf, we are able to study the
transition from out-of-equilibrium to equilibrium dynamics. We present results for the partial structure factors,
for the generalized incoherent intermediate scattering function Cq�tw, tw+ t�, and for the mean-square displace-
ment �r2�tw, tw+ t�. We conclude that there are three different tw regions: �I� At very short waiting times,
Cq�tw, tw+ t� decays very fast without forming a plateau. Similarly �r2�tw, tw+ t� increases without forming a
plateau. �II� With increasing tw a plateau develops in Cq�tw, tw+ t� and �r2�tw, tw+ t�. For intermediate waiting
times the plateau height is independent of tw and Ti. Time superposition applies, i.e., Cq=Cq�t / tr

Cq� where
tr
Cq= tr

Cq�tw� is a waiting time-dependent decay time. Furthermore Cq=C�q , tw, tw+ t� scales as Cq

=C�q ,z�tw, t�� where z is a function of tw and t only, i.e., independent of q. �III� At large tw the system reaches
equilibrium, i.e., Cq�tw, tw+ t� and �r2�tw, tw+ t� are independent of tw and Ti. For Cq�tw, tw+ t� we find that the
time superposition of intermediate waiting times �II� includes the equilibrium curve �III�.
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I. INTRODUCTION

When a glass-forming liquid is quenched from an equilib-
rium state at a high temperature Ti to a nonequilibrium state
at a lower temperature Tf, “aging processes” set in. Provided
that crystallization plays no role at Tf �e.g., due to very low
crystal nucleation rates�, the transition to a final �metastable�
equilibrium state occurs on a time scale that corresponds to
the typical equilibrium relaxation time �eq of the �super-
cooled� liquid at Tf. The dynamics of the system depends on
the waiting time tw, which is the time elapsed after the tem-
perature quench. If �eq exceeds the waiting time tw then the
system is observed in a transient nonequilibrium state which
corresponds to a glass for tw��eq. During the aging process,
i.e., for tw��eq, thermodynamic properties such as volume
and energy are changing and time translation invariance does
not hold: correlation functions at time tw+ t and the time
origin at tw do depend not only on the time difference t but
also on the waiting time tw.

Recently this aging process has been investigated exten-
sively with experiments �1–6�, theoretically �7–9� and with
computer simulations. For a more complete summary of pre-
vious results, we refer the reader to the references �10,11�
and references therein. Computer simulation studies most
similar to the work presented here are on attractive colloidal
systems �12–15�, on the Kob-Andersen Lennard-Jones
�KALJ� mixture �16–25�, and silica �SiO2� �25–28�. In the
case of silica the interpretation of the results is less clear than
for the KALJ mixture; e.g., different findings �25,27� have
been reported on the violation of the fluctuation-dissipation

regime during aging �7–9�. Thus, it remains open whether
silica, as the prototype of a glass-forming system forming a
tetrahedral network structure, exhibits a different aging dy-
namics than, e.g., the KALJ model, where the structure is
similar to that of a closed-packed hard-sphere structure.

Recent simulation studies on amorphous silica �25–39�
have widely used the van Beest, Krammer, van Santen
�BKS� potential �40� to model the interactions between the
atoms. Although it is a simple pair potential, it reproduces
various static and dynamic properties of amorphous silica
very well. For BKS silica, the self-diffusion constants
D���=Si,O� show two different temperature regimes: At
high temperatures, D� decays according to a power law, as
predicted by the mode coupling theory �MCT� of the glass
transition �note, however, that also other interpretations have
been assigned to this high temperature regime�. At low tem-
perature, D� as well as the shear viscosity � exhibit an
Arrhenius behavior with an activation energy of the order of
5 eV, in agreement with experiment �see �30� and references
therein�. The temperature at which the crossover between
both regimes occurs is at Tc�3300 K, corresponding to the
critical MCT temperature of BKS silica. Previous studies of
the aging dynamics of BKS silica �25–27� were performed in
two steps. First, the system was fully equilibrated at a tem-
perature Ti�Tc. Then, the system was quenched to a low
temperature Tf�Tc, followed by the production runs.
Wahlen and Rieger �26� analyze time-dependent correlation
functions at different waiting times tw and Berthier �25� and
Scala et al. �27� study the generalized fluctuation dissipation
relation and the energy landscape �27�. All three studies
�25–27� investigate the early stages of the aging dynamics,
i.e., the dynamics was explored on time scales that were
much smaller than the equilibrium relaxation time �eq at the
temperature Tf.*kvollmay@bucknell.edu
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In this work, we also consider quenches in BKS silica
from a high temperature Ti to a low temperature Tf. Different
from previous simulation studies, we aim at elucidating the
full transient dynamics at Tf from the initial state at tw=0 to
equilibrium. To this end, temperatures Tf are chosen such
that the system can be fully equilibrated on the typical time
span of the MD simulation. Note that the considered tem-
peratures Tf� �2500 K,2750 K,3000 K,3250 K� are be-
low the critical MCT temperatures Tc. Thus, we have access
to the full aging dynamics in the experimentally relevant
Arrhenius temperature regime that we have mentioned
above.

The analysis of time-dependent density correlation func-
tions Cq�tw, tw+ t� �with q the wave number� and the mean-
square displacement �r2�tw, tw+ t� reveal three different re-
gimes of waiting times tw: In the case of Cq�tw, tw+ t� �and
similarly for �r2�tw, tw+ t�� at early tw, a rapid decay to zero
is seen, without forming a plateau at intermediate times.
Then, for larger values of tw a plateau is formed. The height
of this plateau grows with waiting time and becomes more
pronounced, before in the final regime the plateau height is
independent of tw and Ti. In the latter regime, time superpo-
sition holds, i.e., by scaling time with a decay time tr

Cq the Cq
for the different values of tw fall onto a master curve at a
given wave number q. This behavior is very similar to that
found for the KALJ mixture. However, it is different from
the behavior predicted by mean-field spin-glass models and
the activated dynamics scaling, as proposed by Wahlen and
Rieger. Thus, these results suggest that the aging dynamics in
silica, the prototype of a glass former with a tetrahedral net-
work structure, is very similar to that of simple glass formers
with a closed-packed hard-sphere-like structure. We find a
difference between the KALJ mixture and SiO2, however, in
the parametric plot of Cq��Cq�. For SiO2Cq��Cq� shows a data
collapse for different sufficiently large tw and thus
Cq=C�q ,z�tw, t�� whereas this data collapse does not hold as
well in the case of the KALJ mixture.

The rest of the paper is organized as follows: In the next
section, we give the details of the BKS potential and the
simulation. Then, we present the results in Sec. III, before we
summarize in Sec. IV. Appendix describes the implementa-
tion of the Nosé-Hoover thermostat used in our simulation.

II. MODEL AND DETAILS OF THE SIMULATION

The interactions between the particles are modeled by the
BKS potential �40� which has been used frequently and has
proven to be reliable for the study of the dynamics of amor-
phous silica �25–39� The functional form of the BKS poten-
tial is given by a sum of a Coulomb term, an exponential and
a van der Waals term. Thus the potential between particles i
and j, a distance rij apart, is given by

��rij� =
qiqje

2

rij
+ Aije

−Bijrij −
Cij

rij
6 , �1�

where e is the charge of an electron and the constants Aij, Bij
and Cij are ASiSi=0.0 eV, ASiO=18003.7572 eV, AOO
=1388.7730 eV, BSiSi=0.0 Å−1, BSiO=4.87318 Å−1, BOO

=2.76000 Å−1, CSiSi=0.0 eV Å−6, CSiO=133.5381 eV Å−6,
and COO=175.0000 eV Å−6 �40�. The partial charges qi are
qSi=2.4 and qO=−1.2 and e2 is given by
1602.19 / �4	8.8542� eV Å.

The Coulombic part of the interaction was computed by
using the Ewald method �41,42� with a constant
�L=6.3452, where L is the size of the cubic box, and by
using all q vectors with �q�
6·2	 /L �43�. We ensure that
the Ewald term in real space is also differentiable at the
cutoff by smoothing similarly to Eq. �3� in �44� with
rc=8 Å and d=0.05 Å2. To increase computation speed the
non-Coulombic contribution to the potential was truncated,
smoothed and shifted at a distance of 5.5 Å. Note that this
truncation is not negligible since it affects the pressure of the
system. In Ref. �44� further slight variations on the potential
are described in detail �45�. In order to minimize surface
effects periodic boundary conditions were used. The masses
of the Si and O atoms were 28.086 and 15.9994 u, respec-
tively. The number of particles was 336, of which 112 were
silica atoms and 224 were oxygen atoms. For all simulation
runs the size of the cubic box was fixed to
L=16.920468 Å which corresponds to a density of
�=2.323 g /cm3, a value that is very close to the one of real
silica glass, �=2.2 g /cm3 �46�.

We investigated the aging dynamics for systems, which
were quenched from a high temperature Ti to a low tempera-
ture Tf. To increase the statistics, for each �Ti ,Tf� 20
independent simulation runs were performed. To obtain 20
independent configurations we carried out molecular dynam-
ics �MD� simulations using the velocity Verlet algorithm
with a time step of 1.6 fs at 6000 K. The temperature was
kept constant at 6000 K with a stochastic heat bath by re-
placing the velocities of all particles by new velocities drawn
from the corresponding Boltzmann distribution every 150
time steps. Independent configurations were at least 3.27 ns
apart. Each of these configurations undergoes the following
sequence of simulation runs �see also Fig. 1�. After fully
equilibrating the samples at the initial temperatures
Ti=5000 K �for 16.35 ns� and Ti=3760 K �for 32.7 ns�,
the system was quenched instantaneously to
Tf� �2500 K,2750 K,3000 K,3250 K�. To disturb the dy-
namics minimally, we used a Nosé-Hoover thermostat
�47,48� instead of a stochastic heat bath to keep the tempera-
ture at Tf constant. A velocity Verlet algorithm was used to
integrate the Nosé-Hoover equations of motion �see Appen-
dix� with a time step of 1.02 fs. After 0.33 ns the Nosé-
Hoover thermostat was switched off and the simulation was
continued in the NVE �constant number of particles, volume
and energy� ensemble for 33 ns using a time step of 1.6 fs.
Whereas previous simulations used instead the NVT �con-
stant number of particles, volume and temperature� ensemble
for the whole simulation run, we chose to switch to the NVE
ensemble to minimize any influence on the dynamics due to
the chosen heat bath algorithm. For the comparison with pre-
vious simulations and to check for the lack of a temperature
drift, we show in Fig. 2 for exemplatory simulation runs the

temperature T=
2Ēkin

3N as a function of time where Ēkin is the
time averaged kinetic energy with fluctuations as indicated
with error bars. We find that even after switching off the heat
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bath �49� there is no temperature drift for T=3250 K and
T=3000 K and for T=2500 K and T=2750 K there is only
a slight temperature drift, which is of the same order as the
temperature fluctuations and the drift occurs only for
t�0.6 ns. For all times t�0.6 ns and for all investigated
temperatures there is no temperature drift and thus the com-
parison with previous simulations valid.

III. RESULTS

In all following, we investigate how the structure and dy-
namics of the system depend on the waiting time tw elapsed

after the quench from Ti to Tf. We varied the waiting time in
the range 0 ns
 tw
23.98 ns.

A. Partial structure factor

Figure 3 shows for the temperature quench Ti=5000 K to
Tf=2500 K the partial structure factors �11�

S���q,tw� =
1

N	

i=1

N�



j=1

N�

eiq·�ri�tw�−rj�tw��� , �2�

where ri and r j are the positions of particles i and j of spe-
cies � ,�=O,Si. The partial structure factors for all other
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FIG. 1. Schematic sketch of the protocol for the simulation runs. 20 independent initial configurations are obtained via one long
simulation run at 6000 K. For each independent configuration the system is quenched instantaneously and then fully equilibrated at
temperatures Ti=3760 and 5000 K, followed by instantaneous quenches to the temperatures Tf=3250, 3000, 2750, and 2500 K. At each Tf,
time-dependent correlation functions are determined for different waiting times tw. Temperature is kept constant at Tf by coupling the system
to a Nosé-Hoover thermostat. The thermostat is switched off after 0.33 ns, followed by the continuation of the simulations in the microca-
nonical ensemble for 33 ns.
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FIG. 2. �Color online� Temperature T=
2Ēkin

3N as a function of time
t for Ti=5000 K, Tf=2500, 2750, 3000, and 3250 K shown in each

case for the 11th independent simulation run. Ēkin includes a time
average and error bars indicate the corresponding fluctuations.
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FIG. 3. �Color online� Partial structure factors S���q , tw� as de-
fined in Eq. �2� for the temperature quench from Ti=5000 K to
Tf=2500 K. Indicated with arrows are the wave vectors q, which
have been used to determine Cq�tw, tw+ t� as defined in Eq. �3�.
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�Ti ,Tf� combinations are very similar. Although Fig. 3 shows
S�q , tw� for the largest investigated temperature quench, there
is only a slight tw-dependence for very short waiting times
tw
0.33 ns and almost no tw-dependence for tw0.33 ns.

B. Generalized incoherent intermediate scattering
function

In this section, we focus on the time-dependent general-
ized intermediate incoherent scattering function �11�

Cq�tw,tw + t� =
1

N�
	


j=1

N�

eiq·�rj�tw+t�−rj�tw��� , �3�

which is a measure for the correlations of the positions at
time tw and at a later time �tw+ t�. We investigated wave
vectors of magnitude q=1.7,2.7,3.4,4.6,5.5 and 6.6 Å−1, as
indicated with arrows in Fig. 3. We show in Fig. 4 and
Figs. 6–8 results for the first sharp diffraction peak at
q=1.7 Å−1. Similar results are found for all other investi-
gated wave vectors. Figure 4 shows Cq�tw, tw+ t� for the larg-
est investigated temperature quench from Ti=5000 K to
Tf=2500 K for waiting times tw=0–23.98 ns, as listed in
the figure caption of Fig. 4. We find that Cq�tw, tw+ t� is de-
pendent on tw for all but the last three investigated waiting
times. For very short times t�5�10−5 ns and zero waiting
time, Cq�tw=0, t� is well approximated by Cq of the high
temperature Ti=5000 K from which the system has been
quenched �see dashed line in Fig. 4�. Thus, Cq�tw=0, t� for
very short times is only dependent on Ti, q and the particle
type, but independent of Tf. For times of the order of
t=10−3 ns, Cq�tw, tw+ t� is oscillatory due to the small sys-
tem size. For times t�10−3 ns, Cq decays to zero without

forming a plateau for small tw. With increasing tw a plateau is
formed, which is independent of tw for tw0.33 ns.

To characterize the plateau height we define F as the time
average of Cq�tw, tw+ t� for times 2.55 ps
 t
6.64 ps. The
inset of Fig. 5 shows that for large waiting times F�tw� be-
comes independent of tw and of Ti. To test this independence
of Ti further, we show F as a function of q for
tw=16.67 ns in Fig. 5. We find that the plateau height is
dependent on the particle type and decreases with decreasing
q, but F is independent of Ti.

The plateau in Cq becomes more horizontal with decreas-
ing final temperature Tf, as can be seen by the comparison of
Fig. 4 �Tf=2500 K� and Fig. 6 �Tf=3000 K�. Times
t�0.1 ns correspond to the � relaxation, where
Cq�tw, tw+ t� decays from the plateau to zero. For the quench
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FIG. 4. �Color online� Cq�tw, tw+ t� as defined in Eq. �3� for the
quench from Ti=5000 K to Tf=2500 K for O-atoms and
q=1.7 Å−1. Waiting times for the solid lines are from bottom to top
tw=0, 1.63�10−4, 1.63�10−3, 1.63�10−2, 0.33, 0.49, 1.17, 1.96,
8.83, 16.67, and 23.98 ns. The order of solid lines are for increasing
tw black thin, green �gray� thin, black thick, green �gray� thick,
black thin, green �gray� thin, etc. Error bars are as indicated exem-
plary. The thick dashed line corresponds to Cq�tw, tw+ t�=Fs�q , t� at
5000 K.
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from 5000 to 2500 K �see Fig. 4� this decay depends on tw
for all tw�8.83 ns. However, for tw8.83 ns �the largest
three tw�, Cq�tw, tw+ t� is independent of tw not only for in-
termediate times t �plateau� but for all times �including the �
relaxation�. Thus, the system reaches equilibrium during the
simulation run. For the quench from 3760 to 3000 K �see
Fig. 6�, Cq�tw, tw+ t� becomes independent of tw for tw
�1 ns, which means that the time at which equilibrium is
reached is dependent on the temperature quench.

To estimate the time when the system reaches
equilibrium for each �Ti ,Tf� combination, we next
quantify the decay of Cq�tw, tw+ t�. Instead of taking a
vertical cut in Cq�tw, tw+ t� as we did for F, we now take a
horizontal cut. We define the decay time tr

Cq to be the time
t= tr

Cq for which Cq�tw, tw+ tr
Cq�=Ccut. We chose

Ccut=0.625 /0.41 /0.295 /0.155 /0.085 /0.04� for the Si
particles and Ccut=0.625 /0.305 /0.195 /0.08 /0.04 /0.014
for the O particles at the wave numbers
q=1.7 /2.7 /3.4 /4.6 /5.5 /6.6 Å−1, respectively. The resulting
decay times tr

Cq as a function of waiting time tw are shown in
Fig. 7�a� for O-atoms and in Fig. 7�b� for Si-atoms. Color
�black or green/gray� indicates the initial temperature Ti and
symbol shape indicates the final temperature Tf.

We find that tr
Cq�tw� is characterized by three different tw

windows. �I� For waiting times tw�0.3 ns, decay times are
significantly lower for Ti=5000 K �black lines and symbols�
than for Ti=3760 K �green/gray lines and symbols�. The de-
pendence of tr

Cq on tw is strongly dependent on all varied
parameters, i.e., Ti, Tf, particle type, and q. For Ti=5000 K,
Tf=2500 K, 2750 K, and q=1.7 Å−1, 2.7 Å−1 tr

Cq�tw� fol-
lows roughly a power law with an exponent ��1.15 with
variations of the order of 0.07 dependent on Tf, particle type,
and q. �II� For intermediate waiting times, tr

Cq�tw� also fol-
lows roughly a power law with a different exponent than in
regime �I�. We find for Ti=5000 K, Tf=2500 K, 2750 K
and q=1.7 Å−1, 2.7 Å−1 ��0.35 with variations of the or-
der of 0.08 depending on Tf, particle type, and q. Best power
law fits are for Ti=3760 K, Tf=2500 K with � ranging
from �=0.55 /0.57 for q=1.7 Å−1 to �=0.69 /0.63 for
q=6.6 Å−1 and for Si/O atoms. Kob and Barrat find for the
binary Lennard-Jones system also a power law for tr

Cq�tw�,
however, with �=0.882 �16�. Similar to Grigera et al. �50�
we find that the transition from small waiting times �I� to
intermediate waiting times �II� is accompanied by a change
of the exponent �. �III� For very long waiting times tr

Cq�tw� is
independent of tw and Ti, i.e., equilibrium is reached. The
waiting time t23 for which the transition from regime �II� to
regime �III� occurs is dependent on Tf: t23�0.3 ns for
Tf=3250 K, t23�1 ns for Tf=3000 K, t23�3 ns for
Tf=2750 K, and t23�10 ns for Tf=2500 K �51�.

Mean-field spin-glass models predict �8,9�

Cq�tw,tw + t� = Cq
ST�t� + Cq

AG�h�tw + t�
h�tw�

 , �4�

according to which Cq�tw, tw+ t� can be separated into a
short-time term Cq

ST�t� that is independent of tw and an
intermediate-time term that scales as h�tw+ t� /h�tw� where h
is a monotonously increasing function. It has been observed

for different systems that the function h�t� follows h�t�� t�.
Thus, the so-called “simple aging” �see �16� and references
therein� applies and, as a consequence, Cq as a function of
�t / tw� for different tw superimpose.

Müssel and Rieger �52� have proposed activated dynam-
ics for Cq�tw, tw+ t�,

Cq�tw,tw + t� = Cq
ST�t� + Cq

AG� ln��tw + t�/�fit�
ln�tw/�fit�

 , �5�

where the characteristic time scale �fit is a fit parameter. We
find that neither Cq�

tw+t

tw
�, nor Cq� t

tw
�, nor Cq�

ln��tw+t�/�fit�
ln�tw/�fit�

� �for
any choice of �fit� superimpose for different tw. Instead we
find, similar to the results of Kob and Barrat �16� for a binary
Lennard-Jones system, that time superposition holds, defined
by
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FIG. 7. �Color online� Decay time tr
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Cq�tw,tw + t� = Cq
ST�t� + Cq

AG� t

tr
Cq�tw� . �6�

In Fig. 8, we show Cq�t / tr
Cq� for the same set of parameters

as in Fig. 4. When all waiting times are included �see inset of
Fig. 8� time superposition does not apply due to including
too short waiting times. Wahlen and Rieger �26� have studied
Cq�tw, tw+ t� for the same BKS-SiO2 system, however for
waiting times smaller than 50 ps. Their results are consistent
with the inset of Fig. 8. For waiting times tw0.49 ns �see
Fig. 8�, however, Eq. �6� is a good approximation. Please
note that Cq�t / tr

Cq� follows time superposition for all waiting
times tw0.49 ns, i.e., not only for the time-range �II�, but
also for the time-range �III�. That means for the �-relaxation
that the shape of the out-of equilibrium curves is the same
�within error bars� as the shape of the equilibrium curves. We
find similar results for all other �Ti ,Tf� combinations, Si-
particles, and all other q.

Next we test whether Cq=C�q , tw, tw+ t� scales as
Cq=C�q ,z�tw, t�� where z is a function of tw and t only, i.e.,
independent of q. Following an approach of Kob and Barrat
�17� we show in Fig. 9 a parametric plot for Cq��tw, tw+ t� as
a function of Cq�tw, tw+ t� for q=1.7 Å−1 and,
q�=2.7,3.4,4.6,5.5,6.6 Å−1 for O-atoms and the tempera-
ture quench from 5000 K to 2500 K. For sufficiently large tw
we find, contrary to the results of Kob and Barrat for the
Lennard-Jones system, that for SiO2 the parametric curves
superimpose and thus that C�q , tw, tw+ t�=C�q ,z�tw, t�� for
tw0.49 ns. This includes, within error bars, also the
equilibrated curves for tw�10 ns. We find similar results for
all other �Ti ,Tf� combinations, Si-particles, and all other q.

C. Mean square displacement

In the previous section, we have focused on the analysis
of Cq�tw, tw+ t� and identified different time windows. In this
section, we consider the mean-square displacement

�r2�tw,tw + t� =
1

N


i=1

N

��ri�tw + t� − ri�tw��2� . �7�

Figure 10 shows �r2�tw, tw+ t� for the temperature quench
from 5000 K to 2500 K and for O-atoms. As in Fig. 4, for
times t�5�10−5 ns and zero waiting time, the mean square
displacement �r2�tw=0, t� is well approximated by �r2 of
the high temperature Ti=5000 K from which the system has
been quenched �see dashed line in Fig. 10� and thus indepen-
dent of Tf. For times t�10−3 ns, �r2�tw, tw+ t� is oscillatory
due to the small system size �31�, while for times
t�10−3 ns and waiting times tw0.33 ns, we find that �r2

forms a plateau, which is independent of tw. As for Cq, we
find that the plateau is the more horizontal the smaller Tf and
the plateau height depends on the particle type but is inde-
pendent of Ti.

For waiting times tw0.33 ns and times t�0.1 ns, the
mean-square displacement leaves the plateau and increases
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further. To characterize the dependence of this � relaxation
we define the time tr

msd as the time t= tr
msd for which

�r2�tw, tw+ tr
msd�=1.35 Å2 �see Fig. 11�. We can identify

again the three time windows �I� of waiting times
tw�0.3 ns with a dependence on Ti, Tf and particle type, �II�
the aging regime of intermediate waiting times where tr

msd

follows roughly a power law, and �III� for very long waiting
times when equilibrium is reached. The transition from �II�
to �III� occurs at approximately the same times t23 as for Cq,
i.e., t23�0.3 ns for Tf=3250 K, t23�1 ns for Tf=3000 K,
t23�3 ns for Tf=2750 K and t23�10 ns for Tf=2500 K.

Figure 12 shows the equivalent of Fig. 8 to test time su-
perposition. We find for �r2�t / tr

msd� that time superposition is
valid for waiting times 0.34 ns
 tw�8.83 ns, i.e., for the
time window �II� but not for the time window �III�.

IV. SUMMARY

Using molecular dynamics simulations, we investigated
for the strong glass former SiO2 the aging dynamics below

the critical MCT temperature Tc, using the BKS potential to
model the interactions between silicon and oxygen atoms.
After an instantaneous quench from Ti�Tc to a temperature
Tf�Tc the dynamics toward equilibrium was studied as a
function of waiting time tw. Note that the temperatures Tf
were chosen such that equilibrium was reached on the time
span of the simulations �of the order of 30 ns�. The central
quantities considered in this work are the incoherent interme-
diate scattering function Cq�tw, tw+ t� and the mean square
displacement �r2�tw, tw+ t�. These functions depend on the
time origin at tw as long as tw is smaller than the typical
relaxation time, �eq, that is required to equilibrate the system.

We find that the decay of Cq�tw, tw+ t� �and similarly the
rise of �r2�tw, tw+ t�� exhibit qualitative changes from short
to long waiting times. At short waiting times, relaxation pro-
cesses are dominant that correspond to the early � relaxation
regime at the target temperature Tf. In this tw regime, no
well-defined plateau is found in Cq�tw, tw+ t� �see Fig. 4�.
Instead, this function first decreases rapidly, followed by a
strongly stretched exponential decay to zero. At long waiting
times, the � relaxation seems to be very similar to that at
equilibrium. The Debye-Waller factor �i.e., the height of the
plateau in Cq�tw, tw+ t�� has reached its equilibrium value,
although the decay of Cq�tw, tw+ t� from the plateau to zero is
faster than that at equilibrium. However, the shape of curves
describing the long-time decay of Cq�tw, tw+ t� is the same as
that at equilibrium. Thus, Cq follows a simple time superpo-
sition for long waiting times, different e.g., from the “acti-
vated dynamics scaling” proposed by Wahlen and Rieger for
BKS silica.

Our results show that the aging dynamics of BKS silica is
very similar to that of the KALJ mixture. For both silica and
the KALJ mixture three tw-regimes can be identified and Cq
follows time superposition for sufficiently large tw. The only
difference between these two systems is that Cq scales as
C�q ,z�tw, t�� for SiO2 but less well for the KALJ mixture. So
slightly below its critical temperature Tc of MCT, the strong
glass-former silica does not seem to be very different from
typical fragile systems, although one has already reached the
low temperature Arrhenius regime �note that activation ener-
gies for the self-diffusion, viscosity etc. are of the order of
5 eV, similar to the corresponding activation energies close
to the glass transition temperature Tg�1450 K, as measured
in various experiments�. However, the dynamics could be
very different at very low temperatures �close to Tg� where
the long-time aging regime is not accessible by computer
simulations. Thus, more experimental work on the aging dy-
namics of silica around Tg would be very desirable. We also
leave for future work to test whether also for other systems
three tw regimes are identified and whether the equilibrium
curve is included in the time superposition of Cq at interme-
diate and large tw.
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APPENDIX: VELOCITY VERLET NOSÉ HOOVER

The Nosé Hoover equations of motion are for particles
i=1, . . . ,N at position ri with momentum pi

ṙi =
pi

mi
, �A1�

ṗi = Fi − �pi, �A2�

�̇ =
1

Q
�


i=1

N
pi

2

mi
− XkT , �A3�

and thus

r̈i =
Fi

mi
− �ṙi, �A4�

d2 ln s

dt2 = �̇ =
1

Q
�


i=1

N

miṙi
2 − XkT , �A5�

where X=3N. We integrated with the generalized velocity
Verlet form of Fox and Andersen �53�

ri�t + �t� = ri�t� + �tṙi�t� +
��t�2

2
�Fi�t�

mi
− ��t�ṙi�t�� ,

�A6�

ln s�t + �t� = ln s�t� + �t��t� +
��t�2

2Q �

i=1

N

miṙi
2�t� − XkT� ,

�A7�

�approx�t + �t� = ��t� +
�t

Q �

i=1

N

miṙi
2�t� − XkT� , �A8�

ṙi�t + �t� = ṙi�t� +
�t

2
�Fi�t� + Fi�t + �t�

mi

− ���t� + �approx�t + �t��ṙi�t��
��1 −

�t

2
�approx�t + �t�� , �A9�

��t + �t� = ��t� +
�t

2Q�

i=1

N

miṙi
2�t� + 


i=1

N

miṙi
2�t + �t� − 2XkT� .

�A10�

To ensure that �= 

i=1

N
pi

2

2mi
+U��ri��+ Q

2 �2+XkT ln s is con-

served �see �48�� we chose Q=50000 Å2 u.
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