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We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench

from a high temperature Ti to a lower temperature Tf. We obtain a microscopic picture of aging dynamics

by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed

by its neighbors, and determining how these jumps depend on the waiting time tw, the time elapsed since

the temperature quench to Tf. We find that the only tw-dependent microscopic quantity is the number of

jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass

formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the

distribution of times spent in the cage are tw dependent. We conclude that the microscopic aging dynamics

is surprisingly similar for fragile and strong glass formers.

DOI: 10.1103/PhysRevLett.110.017801 PACS numbers: 61.20.Lc, 61.20.Ja, 64.70.ph, 61.43.Fs

If a system is quenched from a high temperature Ti to a
lower temperature Tf below the glass transition, crystal-

lization is avoided and a glass is formed. The resulting out
of equilibrium (aging) dynamics has been hotly debated for
the last decades and remains unclear [1,2]. Most previous
studies on the aging dynamics investigated quantities that
are averages over all particles in the system, such as mean
squared displacement, incoherent intermediate scattering
function, dynamic susceptibility, and energy [3,4]. On the
other hand much less is known about single particle dy-
namics during aging. For colloids, Cianci et al. investi-
gated the structure [5] and Yunker et al. [6] focused on
irreversible rearrangements as a function of waiting
time tw. Warren and Rottler used computer simulations to
investigate single particle hopping events for a binary
Lennard-Jones mixture without shear as well as for poly-
mers with and without shear [7,8]. To gain a more complete
picture of the microscopic processes during aging, we
study single particle hopping (jump) events for the very
different glass former SiO2. Whereas the systems of
Warren and Rottler are fragile glass formers, SiO2 belongs
to the class of strong glass formers [1].

We determine the number of jumping particles per unit
time, the jump length, and the time spent in a cage for a wide
range of waiting times tw and for several choices of Ti and Tf.

To study the aging dynamics of amorphous silica we carried
out molecular dynamics (MD) simulations using the van
Beest-Kramer-van Santen (BKS) potential [9] for the particle
interactions. Starting from 20 independent fully equilibrated
configurations at high temperatures Ti 2 f5000 K; 3760 Kg,
the system is quenched instantaneously to lower tempera-
tures Tf 2 f2500 K; 2750 K; 3000 K; 3250 Kg. To keep

the temperature at Tf constant and to disturb the dynamics

minimally, the Nosé-Hoover thermostat was applied only
for the first 0.33 ns (NVT), and the simulation was

continued in the NVE ensemble for 33 ns during which
Tf stayed constant. For more information on details of the

simulation see Ref. [4].
We focus on the microscopic dynamics at the

lower temperature Tf by analyzing the single particle

trajectories rnðtÞ. During the production runs at Tf we

stored average positions �rnðtlÞ and fluctuations �nðtlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2nðtlÞ � ½�rnðtlÞ�2
q

for each particle n at times tl ¼
l� ð0:00327 nsÞ. Here ð. . .Þ is a time average over
0.00327 ns, which corresponds to 3200 MD steps and
2000 MD steps for the NVT and NVE simulation runs,
respectively. We then use the resulting �rnðtlÞ to identify
jump events. For example, Fig. 1 shows the z component of
�rnðtlÞ for n ¼ 315; rectangular boxes indicate identified
jumps. We define a particle n to undergo a jump if its
change in average position

��rn ¼ j�rnðtlÞ � �rnðtl�4Þj (1)

satisfies

��rn > 3��; (2)

where �� is the average fluctuation size for particle type
� 2 fSi;Og. Because �� is intended to be a measure of
average fluctuations during each particle’s rattling within
its cage of neighbors, we first determine the estimate �2

est;�

by averaging ½�nðtlÞ�2 over all times tl of a given simula-
tion run at Tf and over all particles of the same type �. We

then determine �� by redoing the average over ½�nðtlÞ�2,
but by averaging only over times for which ½�nðtlÞ�2 <
3�2

est;�, which roughly excludes jumps from the average.

Note that the definition of Eq. (2) is similar, but not
identical, to our analysis in Refs. [10,11]. To verify that
our results are independent of the details of the jump

definition, we replaced Eq. (2) with ��rn >
ffiffiffi

2
p

�� and
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indeed found qualitatively the same results as are presented
here, for which we used Eq. (2) [12].

We thus identify for all simulation runs all jump events
occurring during the production run at Tf. For each jump

event k we determine the particle nk jumping from average

position ðrnkÞi at time tik to average position ðrnkÞf at time tfk
(see circles in Fig. 1).

Our focus is on the dynamics of the system as it is aging
over time. We investigate it via the jump events and their
dependence on the waiting time tw, i.e., the time elapsed
since the temperature quench to Tf. We divide the simula-

tion run into waiting time windows, as indicated in Fig. 1.
For each jump event k with jump time tik we determine the

waiting time window which includes tik (the interval�tw in

Fig. 1) and assign to this waiting time window the waiting
time tw of the left border of the selected time window (see
Fig. 1).

We therefore obtain jump statistics for each waiting time
window starting at time tw and of duration�tw (see Fig. 1).
In Fig. 2 we show the number of distinct particles jumping
per observation time �tw as function of waiting time tw
[13]. We find for all investigated Tf and both Ti a clear tw

dependence. With increasing waiting time
Np

�tw
decreases

following roughly a power law until equilibrium is reached

and
Np

�tw
ðtwÞ becomes independent of tw and Ti. The power

law exponents are approximately the same for O and Si
atoms in the range [�0:6=ns, �0:3=ns]. As one might
expect, the larger the Tf, the more particles jump and the

earlier the equilibrium time tjeq, i.e., the time when
Np

�tw

levels off. For comparison we include in Fig. 2 the equi-
librium times tCeq determined via the intermediate incoher-

ent scattering function Cqðtw; tw þ tÞ (tCeq ¼ t23 in

Ref. [4]). We find tjeq � tCeq, i.e., agreement between the

microscopic equilibrium time tjeq (single particle jumps)

and themacroscopic equilibrium tCeq (Cq includes a particle

average).
Next we test whether the tw dependence also manifests

itself in a microscopic length scale. As sketched in Fig. 1,
we define the jump length of event k of particle nk jumping
at time tik from ðrnkÞi to ðrnkÞf to be

�Rk ¼ jðrnkÞf � ðrnkÞij: (3)

Similar to above, we investigate the tw dependence of h�Ri
by including in the average only events for which tik belong
to the same waiting time window. The resulting Fig. 3
shows that h�Ri for oxygen atoms (solid thick lines with
symbols) is independent of tw (with the only exception
being the first time window), and for silicon atoms (dashed
thin lines) h�Ri is only slightly tw dependent. This is in

stark contrast to
Np

�tw
of Fig. 2, which shows strong tw

dependence. The tw independence of �R holds true even
for the distribution Pð�RÞ, both for O and for Si atoms, as
shown in Fig. 4 for the case of Ti ¼ 5000 K, Tf ¼ 2500 K.

We find similar results for all other investigated Ti and Tf.

Consistent with Fig. 3, we find only tw dependence for
tw & 0:02 ns (which corresponds in an experiment to the
undetectable instant of an infinitely fast quench). For tw >
0:02 an additional peak occurs at �R � 0 that is
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FIG. 2 (color online). Number of jumping particles Np per
time �tw as a function of waiting time tw for the case of O
atoms and Ti ¼ 5000 K (bold lines and symbols) and Ti ¼
3760 K (dashed thin lines). To be able to include on the loga-
rithmic scale the data point for the first time window at tw ¼ 0,

we plot
Np

�tw
ðtw ¼ 0Þ instead at tw ¼ 0:005 ns. For comparison

the arrows indicate the equilibrium times tCeq (t23 in Ref. [4]).

FIG. 1 (color online). As an example for the time-averaged
trajectory �rnðtlÞ we show here the z component �zn for the oxygen
atom n ¼ 315 for a single simulation run at Tf ¼ 2500 K, which

had been quenched from Ti ¼ 3760 K. For clarity, only a fraction
of the simulation time is shown. In simulation time units
(1:0217� 10�5 ns) we used the tw borders 0, (1000� 2m1 for
m1 ¼ 0; 1; . . . ; 6), (64 000þ 49 500� 2m2 for m2 ¼ 0; . . . ; 3),
(64 000þm3 � 396 000 for m3 ¼ 2; . . . ; 8).
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mostly due to reversible jumps (as defined in Ref. [10]).
Furthermore we find exponential tails Pð�RÞ �
expð��R=RdecayÞ with Rdecay � 0:8 and 0.3 Å for O and

Si atoms, respectively (similar to the results for a binary
Lennard-Jones mixture [7]).

With the conclusion from Figs. 3 and 4 that the length
scale �R is tw independent, we investigate next the time
scales associated with the single particle jumps. We define
the duration of a jump event k to be

�tkd ¼ tfk � tik (4)

(see Fig. 1) and the time between successive jumps of the
same particle

�tkb ¼ tikþ1 � tfk (5)

that means the time spent in the cage before the same
particle jumps again (see Fig. 1). The resulting h�tdi and
h�tbi are shown in Fig. 5. The time between jumps h�tbi is
several magnitudes larger than h�tdi. For comparison with

h�tbi we include arrows on the right to indicate t
Cq
r ðtw ¼

23:98 nsÞ of Ref. [4], which is defined to be the time for

which Cqðtw; tw þ t
Cq
r Þ ¼ 0:625. Because h�tbi> t

Cq
r , we

conclude that h�tbi is characterizing � relaxation. As
above, we determined the tw dependence by averaging
�tkd and �tkb for all jump events k for which tik belongs to
the same waiting time window. By choosing this definition
of h�tbi we prevent artifacts due to the different time
window sizes, because only tik (instead of �tkb) is required
to be in the time window of consideration. For large tw,
however, the finite simulation run time ttot ¼ 33:33 ns
causes h�tbi to decrease for waiting times tw *
ðttot � �tbÞ. Ignoring this ttot-specific decrease, we there-
fore obtain the surprising result that h�tbi is independent of
tw. This independence of tw holds not only for the average
h�tbi, but even for the whole distribution Pð�tbÞ, as shown
in Fig. 6. Also in Fig. 6 we notice that Pð�tbÞ � �t�1

b at

Tf ¼ 2500 K, whereas Pð�tbÞ � expð��tb=tdecayÞ at

Tf ¼ 3250 K. In Fig. 7 we show how Pð�tbÞ plotted

versus �tb changes with the final temperature, for a fixed
tw ¼ 8:75 ns. We observe that at intermediate tempera-
tures, i.e., Tf ¼ 2750 K and Tf ¼ 3000 K, there is a
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FIG. 3 (color online). Jump length h�Ri [see Eq. (3) and
Fig. 1] as function of waiting time tw for the case of Ti ¼
5000 K and O atoms (bold lines and symbols) and Si atoms
(dashed thin lines). Similar to Fig. 2 we plot h�Riðtw ¼ 0Þ at
tw ¼ 0:005 ns.
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FIG. 4 (color online). Distribution of the jump length Pð�RÞ
for the case of Ti ¼ 5000 K, Tf ¼ 2500 K and for O atoms and

in the inset for Si atoms. Different colors indicate waiting time tw.
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FIG. 5 (color online). We show here average jump duration
h�tdi (lower four curves) and time between successive jumps of
the same particle h�tbi (top four curves) using the definitions of

Eq. (4) and (5) and Fig. 1. The arrows on the right indicate t
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crossover from power law to exponential decay. For com-
parison we include in Fig. 7 the same arrows as in Fig. 2,
which indicate the equilibrium times tCeq. The crossover

time occurs approximately at the same time when
Np

�tw
ðtwÞ

and Cqðtw; tw þ tÞ reach equilibrium. A similar crossover

has been observed for kinetically constrained models (see
Fig. 10 of Ref. [14]) and for a binary Lennard-Jones
mixture (see Fig. 2 of Ref. [15]).
In summary, we obtain the following microscopic pic-

ture of aging: both the distribution of jump length and the
distribution of times spent in the cage Pð�tbÞ are indepen-
dent of waiting time tw (similar to the results of Warren and
Rottler [7,8]). Instead the only tw dependent microscopic
quantity is the number of jumping particles per time, which
decreases with increasing tw (similar to the results of
Yunker et al. [6]). This is consistent with the first hop
time results reported in Refs. [7,8]. We plan to investigate
in the near future spatial correlations of these jumps
[11,16]. In agreement with kinetically constrained models
Pð�tbÞ shows a crossover from power law to exponential
decay [14]. Our results for the strong glass former SiO2 are
surprisingly similar to the fragile glass former results [7,8].
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