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Roles of Repulsive and Attractive Forces in Determining the Structure of Nonuniform Liquids:
Generalized Mean Field Theory
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The structure of a nonuniform Lennard-Jones (LJ) liquid near a hard wall is approximated
by that of a reference fluid with repulsive intermolecular forces in a self-consistently determined
external mean field incorporating the effects of attractive forces. We calculate the reference fluid
structure by first determining the response to the slowly varying part of the field alone, followed
by the response to the harshly repulsive part. Both steps can be carried out very accurately, as
confirmed by Monte Carlo simulations, and good agreement with the structure of the full LJ fluid
is found. [S0031-9007(98)07606-6]

PACS numbers: 61.20.Gy, 68.10.Cr, 68.45.Gd
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Dense liquids have highly nontrivial density correlation
arising because the harshly repulsive molecular cores c
not overlap [1–3]. Because of the constantly changin
molecular arrangements, such correlations play a mu
more fundamental role in liquids than they do in other con
densed phases such as glasses and solids, which sam
only a few basic configurations. Indeed, a model with on
repulsive intermolecular forces [2] can give a surprisingl
accurate description of the full density correlations seen
a uniform dense simple liquid like Ar because the vecto
sum of the longer ranged attractive forces on a given pa
ticle essentiallycancels[1] in most typical configurations.

Nonuniformliquids present a greater and qualitatively
different challenge, since even the averaged effects
attractive forces clearly do not cancel [4]. We discus
here an example wherebothattractive and repulsive forces
can greatly influence the liquid’s structure: a Lennard
Jones (LJ) fluid next to a hard wall. We obtain accura
numerical results using a physically suggestive generaliz
mean field description of the attractive forces [5]. W
consider first the effects of these slowly varying forces o
the liquid’s structure before taking account of the respon
to the rapidly varying (hard-core-like) part of the externa
field. This treatment of attractive interactions is quit
different from that used in conventional integral equatio
and density functional methods [6], and we believe it offer
important conceptual and computational advantages.

Fluid particles interact with a known external (wall)
field fsrd and through the LJ pair potentialwsrijd ;
u0srijd 1 u1srijd, divided as usual [2] so that all the
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repulsive intermolecular forces arise fromu0 and all the
attractive forces fromu1. We assume that the externa
field fsrd ; f0srd 1 f1srd can be separated in a simila
way, where the subscript0 denotes in all that follows a
harshly repulsive interaction and the subscript1 a much
more slowly varying interaction usually associated w
attractive forces. Here we takefsrd to be a hard wall
potential, settingf1srd  0 andf0srd  fHWszd, where
fHW  ` for z # 1 (in reduced units) and0 otherwise,
and we letrB be the bulk density far from the wall.

We relate the structure of the nonuniform LJ syste
to that of a simplernonuniform reference fluid[4,7],
with only repulsive intermolecular pair interactionsu0srijd
(equal to the LJ repulsions) in a differenteffective
reference field(ERF) fRsrd. While the replacement o
attractive pair interactions by an approximate “molecu
field” is an essential step in mean field theory, we c
think of other more general choices. Here we determ
fRsrd formally by the requirement that it has a function
form such that thelocal (singlet) density at every pointr
in the reference fluid equals that of the full LJ fluid [8]:

r0sr; ffRgd  rsr; ffgd . (1)

The subscript0 reminds us that the reference system p
interactions arise only fromu0 and the notationffRg
indicates that all distribution functions are functionals
the appropriate external field.

To find fR explicitly, we subtract the first equations o
the YBG hierarchy [3] for the full and reference system
with fR chosen so that Eq. (1) is satisfied [4,7]. Th
result can be written exactly as
2=1ffRsr1d 2 fsr1dg  2
Z

dr2 r0sr2 j r1; ffRgd=1u1sr12d 2
Z

dr2 hrsr2 j r1; ffgd 2 r0sr2 j r1; ffRgdj=1wsr12d .

(2)
h
n-
s
an
Here r0sr2 j r1; ffRgd ; r
s2d
0 sr1, r2; ffRgdyr0sr1; ffRgd

is the conditional singlet density, i.e., the density atr2
given that a particle is fixed atr1.

If we assume that Eq. (1) produces similar local en
ronments for the (identical) repulsive cores in the two fl
i-
-

ids, which mainly determine density correlations throug
excluded volume effects, then the conditional singlet de
sities in the two fluids should also be very similar. Thi
key structural assumption introduces a generalized me
© 1998 The American Physical Society
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field theory in which the reference fluid still has nontrivia
pair and higher order correlations induced by the repuls
forces. This suggests that the last term on the right-ha
side of Eq. (2) is often very small. If we ignore it com
pletely [9] we obtain the approximate equation for the fie
fR suggested by Weeks, Selinger, and Broughton [4]:

=1ffRsr1d 2 fsr1dg 
Z

dr2 r0sr2 j r1; ffRgd

3 =1u1sr12d . (3)

Equation (3) incorporates mean field ideas, but
appropriately focuses onforces [1,2]. The relation to
ordinary mean field theory becomes clearer [7] if w
replacer0sr2 j r1; ffRgd by r0sr2; ffRgd in Eq. (3). This
approximation is much better than one might at fir
suppose, since the main difference in these two functio
occurs whenr2 is close tor1, but then for smallr12 the
multiplicative factor2=1u1sr12d (theattractivepart of the
LJ force) vanishes identically. The gradient=1 can then
be taken outside the integral and Eq. (3) can be integra
Choosing the constant of integration so that the density
from the wall equalsrB, we obtain the simplified mean
field equation [7]:

fRsr1d 2 fsr1d ; fssr1d


Z

dr2 fr0sr2; ffRgd 2 rBgu1sr12d .

(4)

Because of the integration over the slowly varyin
attractive potential “weighting function”u1sr12d, fssrd in
Eq. (4) extends smoothly into the repulsive core regi
wherer0sr; ffRgd vanishes. Outside the wall it is smoot
and relatively slowly varying even whenr0sr; ffRgd itself
has pronounced oscillations. Physicallyfssrd mimics
the effects of the unbalanced attractive forces in the
system, giving a softrepulsiveinteraction [4] that tends to
push the reference particles away from the wall.

In order to solve equations like (3) or (4) to obtai
the self-consistent ERFfRsrd, we must determine the re-
quired reference fluid distribution functions arising from
a given external field. In previous work [4,7], compute
simulations were used for this purpose. We now intr
duce a simple and accurate numerical method for cal
lating these distribution functions and illustrate it here b
solving (4) for the case of the LJ fluid near the hard wa

We note that the ERFfRsrd ; fR0srd 1 fR1srd in
Eq. (4) (and other related equations) can be naturally se
rated into the sum of a harshly repulsive part,fR0srd,
and a much more slowly varying “smooth” partfR1srd,
arising physically mainly from the attractive interaction
in the original system. Equation (4) suggests the ide
tification fR0srd  f0srd and fR1srd  fssrd 1 f1srd.
More generally, we can definefR0srd  f0srd 2 f0ssrd
and fR1srd  fssrd 1 f0ssrd 1 f1srd, wheref0ssrd is
an essentially arbitrary smooth function that is nonze
only in the repulsive core region but withf0ssrd ø f0srd,
so thatfR0 remains a harshly repulsive interaction. In th
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present case it is sufficient to take the separation suggest
by Eq. (4), withfR0  fHW andfR1  fs.

Our task is now to determine the local density
r0sr; ffRgd ; r0,Rsrd produced by a given ERFfR. We
provide a new way to solve this basic problem, quite
independent of its origins in the mean field equation (4)
Initially we treat the LJ repulsive potentialu0 as a hard
core interaction but then use standard methods [3] t
correct for its finite softness in our final numerical results
We expect that there will be very different responses
of the reference fluid density to the rapidly and slowly
varying parts of the ERFfR ; fR0 1 fR1 and anticipate
that any large oscillations arise mainly from the harshly
repulsive partfR0. These oscillations cause problems
in density functional methods, which use a variety of
somewhat arbitrary weighting functions to arrive at some
underlying “smooth density” for use in a free energy
functional [6].

Instead, we first determine the response to theslowly
varying part of the ERF alone,followed by the response
to the harshly repulsive part, using different methods in
each step appropriate for the different density response
In the first step, we determine the associated “smooth inte
face”r0sr; ffR1gd ; r0,R1srd that arises naturally from the
slowly varying partfR1  fs of the ERFalone. Physi-
cally, this takes account of the effects of the attractive inter
actions modeled byfR1. We start from the basic equation
relating small changes in the potential and density [3]:

2bdfR1sr1d 
Z

dr2 x21
0 sr1, r2; fr0,R1gddr0,R1sr2d ,

(5)

through the generalized linear response function
x

21
0 sr1, r2; fr0,R1gd ; dsr1 2 r2dyr0,R1sr1d 2 c0sr1, r2;

fr0,R1gd. Herec0sr1, r2; fr0,R1gd is the direct correlation
function of the reference fluid with densityr0,R1 and
b  1ykBT . Specializing to the case when the change
is a small displacement of the field, we find the exac
equation [10]:

=1r0,R1sr1dyr0,R1sr1d  2b=1fR1sr1d

1
Z

dr2 c0sr1, r2; fr0,R1gd

3 =2r0,R1sr2d . (6)

If r0,R1 is relatively slowly varying, we can accu-
rately approximatec0sr1, r2; fr0,R1gd under the integral in
Eq. (6) by theuniform fluid function c0sr12; r̄12d, where
r̄12 is some intermediate density associated with the tw
points [11]. A natural choice that gives very good results
when r0,R1 is reasonably smooth is̄r12  fr0,R1sr1d 1

r0,R1sr2dgy2. Starting with a givenfR1, we can then
solve Eq. (6) for the associatedr0,R1 by iteration, making
use of the analytic and accurate Percus-Yevick (PY) ex
pressions for the direct correlation function of the uniform
hard sphere fluid [3,11]. If necessary, we can choosefR1
inside the repulsive core region to help ensure thatr0,R1 is
4401
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smooth enough for the expansion method to be accur
this procedure is important in some other applications [

A special case where this step can be carried
analytically arises whenr0,R1 varies so slowly that it
is accurate to keep only the first term in the expans
of =2r0,R1sr2d in Eq. (6) aboutr1. After integrating,
we arrive at the simplelocal hydrostatic relation[11]
betweenr0,R1 andfR1:

m0sssr0,R1srdddd 1 fR1srd  m0B , (7)

where m0srd is the chemical potential of the uniform
(hard sphere) reference fluid at densityr and m0B 
m0srBd.

The smooth profiler0,R1 is analogous to one that coul
be calculated using a single occupancy lattice gas (Isi
model, where correlations ariseonly from attractive inter-
actions [1]. A realistic fluid has additional short wav
length correlations due to the repulsive intermolecu
forces. These show up primarily in the second step of
method, where we take account of the response tofR0,
the remaining harshly repulsive part of the ERF.

Consider first asmall perturbing potentialdfR0 that is
nonzero only inside the wall region withz , 1. Evalu-
ating Eq. (5) forz1 . 1 gives an exact relation betwee
the small induced density changes inside and outside
wall region. However, it has been shown that even la
density fluctuations in a hard sphere fluid are accurately
scribed by Gaussian fluctuation theory [12]. This sugge
that if we could somehowimposethe proper values on the
wall density field forz , 1 arising from thefull fR0 , we
could then still use the linear response relation to determ
the large density changeDr0,Rsrd ; r0,Rsrd 2 r0,R1srd
induced forz . 1. Imposing accurate density values
general is very difficult [13], but for the hard wall poten
tial fR0  fHW we have the exact resultr0,Rsrd  0 for
all z # 1. Thus replacingdr0,R1 by Dr0,R in (5) and set-
ting r0,R  0 for all z # 1, we find forz1 . 1:

Dr0,Rsr1dyr0,R1sr1d 
Z

dr2 c0sr1, r2; fr0,R1gd

3 Dr0,Rsr2d . (8)

Equation (8) is a linear equation forDr0,Rsr1d, which
we can directly solve by iteration or other means, appro
mating c0sr1, r2; fr0,R1gd by that of an appropriate uni
form system, just as we did before. Whenr0,R1srd  rB,
Eq. (8) is equivalent to the usual hard-wall, hard-partic
PY equation, which has an analytic solution [14]. Equ
tion (8) is quite adequate for our purposes here, thou
small errors can be seen at the highest densities. If
more accuracy is required, we could use modified gene
ized mean-spherical approximation-type equations rela
to the PY equation [14]. It may also be possible to u
new and very accurate density functional methods for h
core fluids in this step of our method [15].

The net result of this two step process is the desi
r0,R arising from a givenfR. This can be substituted into
Eq. (4), which can then be iterated to determine the fi
self-consistentfR. In Fig. 1 we give the self-consisten
4402
ate;
5].
out

ion

d
ng)

e-
lar
our

n
the

rge
de-
sts

ine

in
-

xi-
-

le
a-
gh

still
ral-
ted
se
ard

red

nal
t

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
z

0.0

2.0

4.0

6.0

8.0

10.0

φ

(a)

(b)

FIG. 1. Self-consistent potentialfR1  fs (dashed line) for
rB  0.785 (a) andrB  0.45 (b), T  1.35, and bare wall
potentialfR0  fHW (solid line). The ERFfR  fR0 1 fR1.

potentialsfR1  fs that satisfy Eqs. (4), (6), and (8)
for two different states along the near critical isother
T  1.35. We see thatfR1 is indeed a slowly varying
repulsive interaction in both cases. In Fig. 2 we giv
the associated smooth density profilesr0,R1 from (6) for
each state, as well as the full profilesr0,R determined
from Eq. (8). These are compared to Monte Carlo (MC
simulations we carried out [5] of the reference system
the ERFs of Fig. 1. This directly tests the accuracy of o
two step procedure for calculating the effects offR on
the reference system. The agreement is excellent.

In Fig. 3 we test the simplified mean field treatment
the attractive interactions in Eq. (4) by comparing the re
erence profilesr0,R to those of the full LJ fluid in the
presence of the hard wall, as determined by MC calc
lations. There is good agreement, though small quan
tative differences can be seen. Thus even the simp
mean field treatment of attractive interactions is capa
of capturing the major changes in the density profile as

0.0 1.0 2.0 3.0 4.0 5.0
z

0.0

0.5

1.0

1.5

2.0

2.5

ρ

FIG. 2. Density profilesr0,R1 (dashed line) andr0,R (solid
line) compared to MC simulations of the reference fluid
potentialfR (circles) for the same states as in Fig. 1.
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FIG. 3. Density profilesr0,R compared to MC simulation of
the full LJ fluid (circles) for the same states as in Fig. 1.

density is decreased, and at lower temperature at coe
tence we find complete drying states where a stable vap
liquid interface can exist arbitrarily far from the wall [5].

Our emphasis thus far has been on quantitative nume
cal calculations. However, the qualitative features of o
method are equally important. A long-standing proble
of liquid state theory, well illustrated by the nonuniform
fluid example studied here, is how to treat consistently t
oscillating molecular scale “excluded volume” correlation
arising from repulsive intermolecular forces and the mo
slowly varying and longer ranged correlations arising from
attractive forces and often associated with the formatio
of interfaces. In principle these issues are addressed
modern density functional and integral equation method
but in practice a number of uncontrolled and often math
matically motivated approximations are made. It is ofte
difficult to assess their physical implications and to dete
mine where the major sources of error lie. Here, we ha
divided this problem into several distinct parts, whose a
curacy can be examined separately, and where the ph
cal content and limitations of the methods used are clear
We used here the simplest mean field equation to determ
the ERFfR but more accurate (though more complicated
equations derived from (2) are available [5].

To determine the structure of the reference fluid in th
presence of a given ERF, we first calculated the respon
to fR1, the slowly varying part of the ERF, by expand
ing about a uniform system. Next we used a Gaussi
field model [12] (equivalent to a modified wall-particle PY
equation) to calculate the response to the remaining hars
repulsive partfR0 of the ERF. More accurate methods
could be used in both steps if necessary, and for quali
tive purposes both steps can be simplified considerab
For example, Lum, Chandler, and Weeks [16] have dev
oped very simple approximations for use with continuum
Landau-Ginsburgh-type equations that give good quali
tive results in a number of different cases, including hy
drophobic interactions in water. Application of these idea
to a variety of different problems is underway [5,16].
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