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Roles of Repulsive and Attractive Forces in Determining the Structure of Nonuniform Liquids:
Generalized Mean Field Theory
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The structure of a nonuniform Lennard-Jones (LJ) liquid near a hard wall is approximated
by that of a reference fluid with repulsive intermolecular forces in a self-consistently determined
external mean field incorporating the effects of attractive forces. We calculate the reference fluid
structure by first determining the response to the slowly varying part of the field alone, followed
by the response to the harshly repulsive part. Both steps can be carried out very accurately, as
confirmed by Monte Carlo simulations, and good agreement with the structure of the full LJ fluid
is found. [S0031-9007(98)07606-6]

PACS numbers: 61.20.Gy, 68.10.Cr, 68.45.Gd

Dense liquids have highly nontrivial density correlationsrepulsive intermolecular forces arise fragg and all the
arising because the harshly repulsive molecular cores caattractive forces fromu;. We assume that the external
not overlap [1-3]. Because of the constantly changindield ¢ (r) = ¢o(r) + ¢(r) can be separated in a similar
molecular arrangements, such correlations play a muctvay, where the subscrifit denotes in all that follows a
more fundamental role in liquids than they do in other con-harshly repulsive interaction and the subsciiph much
densed phases such as glasses and solids, which samplere slowly varying interaction usually associated with
only a few basic configurations. Indeed, a model with onlyattractive forces. Here we tak¢(r) to be a hard wall
repulsive intermolecular forces [2] can give a surprisinglypotential, settingp(r) = 0 and ¢o(r) = ¢yw(z), where
accurate description of the full density correlations seen inpgw = o for z = 1 (in reduced units) ané otherwise,

a uniform dense simple liquid like Ar because the vectorand we letpg be the bulk density far from the wall.
sum of the longer ranged attractive forces on a given par- We relate the structure of the nonuniform LJ system
ticle essentiallycancelg1] in most typical configurations. to that of a simplernonuniform reference fluid4,7],

Nonuniformliquids present a greater and qualitatively with only repulsive intermolecular pair interactiomg(r;;)
different challenge, since even the averaged effects diequal to the LJ repulsions) in a differemffective
attractive forces clearly do not cancel [4]. We discusseference fieldERF) ¢r(r). While the replacement of
here an example whebmthattractive and repulsive forces attractive pair interactions by an approximate “molecular
can greatly influence the liquid’s structure: a Lennard-field” is an essential step in mean field theory, we can
Jones (LJ) fluid next to a hard wall. We obtain accuratehink of other more general choices. Here we determine
numerical results using a physically suggestive generalizegr(r) formally by the requirement that it has a functional
mean field description of the attractive forces [5]. Weform such that thdocal (singlet) density at every point
consider first the effects of these slowly varying forces orin the reference fluid equals that of the full LJ fluid [8]:
the liquid s structure before taklng. account of the response po(rt:[dr]) = p(r;[4]). 1)
to the rapidly varying (hard-core-like) part of the external
field. This treatment of attractive interactions is quite, : i X
different from that used in conventional integral equationintéractions arise only froms and the notation¢x]
and density functional methods [6], and we believe it offerdndicates that all distribution functions are functionals of

important conceptual and computational advantages. "€ appropriate external field. , ,
Fluid particles interact with a known external (wally 19 find ¢x explicitly, we subtract the first equations of

field ¢(r) and through the LJ pair potentiab(r;;) = the YBG hierarchy [3] for the full and reference systems

uo(rij) + ui(ri;), divided as usual [2] so that all th? géﬁnﬁ%ﬁ%?ﬁui% g;(agctllzfégl) is satisfied [4,7]. The

The subscripd reminds us that the reference system pair

—Vilgr(r) — o(r)] = —[ dry po(ry | r1:[prDViui(ri2) — fdl‘z{P(l‘z | ri;[p]) — po(ra | ri;[drDIViw(riz).
(2

Here po(r | ri;[¢r]) = P(()Z)(l'l,l'z;[¢R])/P0(1'1;[¢R]) [
is the conditional singlet density, i.e., the density &t ' ids, which mainly determine density correlations through
given that a particle is fixed at. excluded volume effects, then the conditional singlet den-
If we assume that Eq. (1) produces similar local envi-sities in the two fluids should also be very similar. This
ronments for the (identical) repulsive cores in the two flu-key structural assumption introduces a generalized mean
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field theory in which the reference fluid still has nontrivial present case it is sufficient to take the separation suggested
pair and higher order correlations induced by the repulsiviéy Eq. (4), with¢go = duw andog; = o@.
forces. This suggests that the last term on the right-hand Our task is now to determine the local density
side of Eq. (2) is often very small. If we ignore it com- po(r;[¢r]) = por(r) produced by a given ERB;. We
pletely [9] we obtain the approximate equation for the fieldprovide a new way to solve this basic problem, quite
¢r suggested by Weeks, Selinger, and Broughton [4]: independent of its origins in the mean field equation (4).
Initially we treat the LJ repulsive potential, as a hard
Vilér(r) — ¢(r1)] = fdrz po(ra | ri;[ér]) core interaction but then use standard methods [3] to
correct for its finite softness in our final numerical results.
X Viuy(ria). 3) We expect that there will be very different responses
Equation (3) incorporates mean field ideas, but itof the reference fluid density to the rapidly and slowly
appropriately focuses oforces [1,2]. The relation to varying parts of the ERr = ¢dro + dx and anticipate
ordinary mean field theory becomes clearer [7] if wethat any large oscillations arise mainly from the harshly
replacepy(r; | ri;[¢r]) by po(r2;[#r]) in Eq. (3). This repulsive part¢zo. These oscillations cause problems
approximation is much better than one might at firstin density functional methods, which use a variety of
suppose, since the main difference in these two functionsomewhat arbitrary weighting functions to arrive at some
occurs wherr; is close tor;, but then for small-, the  underlying “smooth density” for use in a free energy
multiplicative factor—V,u;(r2) (theattractivepart of the  functional [6].
LJ force) vanishes identically. The gradiént can then Instead, we first determine the response to stwavly
be taken outside the integral and Eqg. (3) can be integrategarying part of the ERF alondpllowed by the response
Choosing the constant of integration so that the density fato the harshly repulsive part, using different methods in
from the wall equalspz, we obtain the simplified mean each step appropriate for the different density responses.

field equation [7]: In the first step, we determine the associated “smooth inter-
dr(r1) — ¢(r1) = ¢y(r1) face” po(r; [$x1]) = pori (r) that arises naturally from the
slowly varying part$g; = ¢, of the ERFalone. Physi-
= [ drs [ po(r2;[dr]) — pslui(riz). cally, this takes account of the effects of the attractive inter-

actions modeled by ;. We start from the basic equation
(4) relating small changes in the potential and density [3]:
Because of the integration over the slowly varying
attractive potential “weighting functionit; (ry2), ¢,(r) in —B8ri(r) = ] dry xo ' (r1,r2: [ por1 )8 pori(ra),
Eg. (4) extends smoothly into the repulsive core region (5)
wherep(r;[dr]) vanishes. Outside the wall it is smooth
and relatively slowly varying even when(r;[¢]) itself ~ through the generalized linear response function
has pronounced oscillations. Physically,(r) mimics X0 (e, ras[pori]) = 8@y — 1)/ pori(ry) — colry,ra;
the effects of the unbalanced attractive forces in the Lipor1]). Hereco(ri,r2;[ por1]) is the direct correlation
system, giving a softepulsiveinteraction [4] that tends to function of the reference fluid with density,z, and
push the reference particles away from the wall. B = 1/kgT. Specializing to the case when the change
In order to solve equations like (3) or (4) to obtainis a small displacement of the field, we find the exact
the self-consistent ERB(r), we must determine the re- equation [10]:
quired reference fluid distribution functions arising from
a given external field. In previous work [4,7], computer  V1P0R1(1)/pori(r) = = BVidri(ry)
simulations were used for this purpose. We now intro- n fdr colerrn[ )
duce a simple and accurate numerical method for calcu- 2 COWL, F2: LPORI
X Vapori(ra). (6)

lating these distribution functions and illustrate it here by
solving (4) for the case of the LJ fluid near the hard wall.

We note that the ERFRbr(r) = ¢ro(r) + ¢ri(r) in If pori is relatively slowly varying, we can accu-
Eg. (4) (and other related equations) can be naturally sepaately approximate(r;, ra;[ po1]) under the integral in
rated into the sum of a harshly repulsive pafizo(r), Eq. (6) by theuniform fluid function cy(r12; p12), where
and a much more slowly varying “smooth” papz;(r), p» is some intermediate density associated with the two
arising physically mainly from the attractive interactions points [11]. A natural choice that gives very good results
in the original system. Equation (4) suggests the idenwhen pg; is reasonably smooth g1, = [pori(r;) +
tification ¢ro(r) = ¢o(r) and ¢gi(r) = ¢(r) + ¢i(r).  pori(ry)]/2. Starting with a given¢g;, we can then
More generally, we can defingzo(r) = ¢o(r) — dos(r)  solve Eg. (6) for the associated z; by iteration, making
and ¢g(r) = ¢,(r) + dos(r) + ¢1(r), wherego,(r) is  use of the analytic and accurate Percus-Yevick (PY) ex-
an essentially arbitrary smooth function that is nonzergressions for the direct correlation function of the uniform
only in the repulsive core region but withy;(r) < ¢o(r),  hard sphere fluid [3,11]. If necessary, we can chabge
so that¢ o remains a harshly repulsive interaction. In theinside the repulsive core region to help ensure thaf; is
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smooth enough for the expansion method to be accurate; ==L
this procedure is important in some other applications [5]. 100 N
A special case where this step can be carried out \fa)
analytically arises wherpgz; varies so slowly that it 8.0 b \
is accurate to keep only the first term in the expansion \
of Vapori(ry) in Eq. (6) aboutr;. After integrating, 60 F—=2
we arrive at the simpldocal hydrostatic relation[11] ¢ - \\\ \
betweenpoz; and ¢g:: \\\
#o(pori1(r)) + dri(r) = pop., (7 o \\\\\
where uo(p) is the chemical potential of the uniform 20 | \\\\
(hard sphere) reference fluid at densjy and pop = ' \\ NS
mo(pp)- . Ml TS—o
The smooth profilgg x, is analogous to one that could 00, 00 10 20 30 40 50
be calculated using a single occupancy lattice gas (Ising) P

model, where correlations arisaly from attractive inter- ) i _ .
actions [1]. A realistic fluid has additional short wave- F'C- 1. Self-consistent potentiaby; = ¢, (dashed line) for

. . . pr = 0.785 (a) andpp = 0.45 (b), 7 = 1.35, and bare wall
length correlations due to the repulsive intermoleculalygtentialgy, = ¢yw (solid line). The ERFbx = dro + dri-
forces. These show up primarily in the second step of our

method, where we take account of the response ig, . .
the remaining harshly repulsive part of the ERF. potentials ¢, = ¢, that satisfy Egs. (4), (6), and (8)

Consider first asmall perturbing potentiab ¢ o that is for two different states along the near critical isotherm
nonzero only inside the wall region with< 1. Evalu- 1 = 1.35. We see that, is indeed a slowly varying
ating Eq. (5) forz; > 1 gives an exact relation between repulsive '|nteract|on in both. cases. In Fig. 2 we give
the small induced density changes inside and outside tH8€ associated smooth density profijesz, from (6) for
wall region. However, it has been shown that even larg&ach state, as well as the full profilgg determined
density fluctuations in a hard sphere fluid are accurately ddf®M EGQ. (8). These are compared to Monte Carlo (MC)
scribed by Gaussian fluctuation theory [12]. This suggest§imulations we carried out [S] of the reference system in
that if we could somehoumposethe proper values on the the ERFs of Fig. 1. This dlrectly_tests the accuracy of our
wall density field for; < 1 arising from thefull ¢z, , we WO Step procedure for calculating the effectsdby on
could then still use the linear response relation to determinf'€ reference system. The agreement is excellent.
the large density chang&pgz(r) = por(r) — pori(r) In Fig. 3 we test the simplified mean field treatment of
induced forz > 1. Imposingj accurate density values in the attractive interactions in Eq. (4) by comparing the ref-
general is very difficult [13], but for the hard wall poten- €rénce profilesoox to those of the full LJ fluid in the
tial pro = Ppuw We have the exact resyby z(r) = 0 for ~ Presence of the hard wall, as determined by MC calcu-
all z = 1. Thus replacing po.r1 by Apox in (5) and set- lations. There is good agreement, though small quanti-

ting pog = O for all z = 1, we find forz; > 1 tative differences can be seen. Thus even the simplest
A’ _ [y _ mean field treatment of attractive interactions is capable
por(c)/pori(tr) = | drzcolrr ras[pori]) of capturing the major changes in the density profile as the
X Apor(ra). (8)
Equation (8) is a linear equation fdtpg (r;), which 2.5 T
we can directly solve by iteration or other means, approxi-

mating co(ry, r2; [ pogr1]) by that of an appropriate uni- 20}
form system, just as we did before. Whegig:(r) = ps,
Eq. (8) is equivalent to the usual hard-wall, hard-particle
PY equation, which has an analytic solution [14]. Equa-
tion (8) is quite adequate for our purposes here, though
small errors can be seen at the highest densities. If still 10
more accuracy is required, we could use modified general-
ized mean-spherical approximation-type equations related 05 |
to the PY equation [14]. It may also be possible to use
new and very accurate density functional methods for hard N , , ,
core fluids in this step of our method [15]. 0.0 1.0 2.0 3.0 4.0 5.0
The net result of this two step process is the desired z

po.r arising from a givenpg. This can be substituted into g5 o Density profilespox: (dashed line) angsox (solid

Eq. (4), which can then be iterated to determine the finaline) compared to MC simulations of the reference fluid in
self-consistenipg. In Fig. 1 we give the self-consistent potential¢ (circles) for the same states as in Fig. 1.
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FIG. 3. Density profilesppx compared to MC simulation of
the full LJ fluid (circles) for the same states as in Fig. 1.
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