
Generating a Statically-Checkable Device Driver I/O
Interface

Lea Wittie
Bucknell University

lwittie@bucknell.edu

Chris Hawblitzel
Microsoft

Chris.Hawblitzel@microsoft.com

Derrin Pierret
Bucknell University

dpierret@alum.bucknell.edu

ABSTRACT
Device drivers are known to be a main source of operating sys-
tem bugs. Several research groups have created driver specification
languages that dynamically check pre- and postconditions on the
IO operations of a device driver. The low-level type-safe language,
Clay, has the facilities to statically check the safety of a device
driver but is difficult to use directly. We have created a new de-
vice driver specification language, Laddie, which compiles the IO
interface of a device driver to Clay thus leveraging its static safety
checking while remaining simple to use.

1. INTRODUCTION
Modern operating systems are known to contain many bugs. A

study by Chou et al. [3] examined the number and location of bugs
in the Linux OS and found that the device drivers, which accounted
for 70% of the OS code, accounted for almost 90% of the bugs.
One possible explanation is that drivers are written by a wide range
of programmers who know the kernel interface well but may be un-
familiar with the device or vice versa. The programmers are likely
to make mistakes and, using cut and paste, propagate the mistakes
over many drivers. Another explanation is that most drivers are
written in non-type-safe languages like C and assembly.

Language technologies can help to alleviate the driver problem
by detecting bugs. There have been three main specification lan-
guages for device drivers in the past few years; Devil [11, 17],
NDL [4], and Hail [19, 25]. The specifications describe how a
driver is supposed to function. Although all three languages per-
form some simple static checking, these languages compile to C
and use assertions, state machines, and if-statements to detect bugs
in the driver code at run-time. These languages are discussed in
greater detail in Section 7.

Detecting bugs at run-time isn’t sufficient to produce bug free
drivers because in order for a programmer to be sure all bugs have
been fixed, they must test every execution path in the driver. Drivers
are frequently complex enough that this would be an impossible
task and the end-user will still be the one to notice any remain-
ing bugs. Run-time error detection is also less useful in embedded
systems where patches are expensive.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM Copyright Lea Wittie, Chris Hawblitzel, Derrin Pier-
ret. APGES 2007, Oct. 4th 2007, Salzburg, Austria ...$5.00.

This paper makes two contributions: a low-level C-like type-safe
language for systems programming where the types are statically
checked, and a high-level specification language for device driver
IO which compiles into our type-safe language and leverages its
static checking. Our type-safe language, Clay, provides the follow-
ing compile-time guarantees: each process only handles its own
memory, system state is tracked, and state invariants are verified
in function pre- and postconditions. However to accomplish this,
Clay is also similar to a typed assembly language and thus difficult
for programmers to use. Unlike Clay, our device driver language,
Laddie, has a simple syntax based on Hail and can be easily used
by programmers to specify a driver/device IO interface. Laddie’s
syntax is also very similar to the description in the manual for many
devices.

We have validated these techniques by building a compiler that
generates Clay code from Laddie code and a working device driver
written in Laddie and Clay.

2. DEVICE DRIVERS
A device is hardware attached to your computer, such as a mouse

or a network card. A device driver is OS code that allows your
computer to communicate with a specific device. A driver consists
of a set of functions it performs and a communication interface
between the driver and the device. The driver is usually described
in a large manual, frequently using a description in English or a
set of charts to explain the driver functions and the communication
interface. This paper is focused on the communication interface
between a driver and its device.

Communication between a driver and its device is usually ac-
complished through a series of register reads and writes. The reg-
isters may be mapped onto memory or use a special set of read and
write functions. The rules governing when a register can be ac-
cessed frequently include specified conditions on the logical state
of the device. For example, some registers should not be accessed
when device interrupts are turned on. Although it is relevant to
safety, logical state, such as device interrupt status, is not usually
represented by values in driver memory.

An IO specification for a driver states the rules for accessing
each device register. These rules depend on read or write access,
byte size, the read or written value, and logical device state. A
register may be readable, writable, or both. The access to a register
has a specific byte size. For instance a register may accept 1 or 2
byte writes but only 2 byte reads. Frequently, a writable register
can only safely accept a specific set of write-values. Values outside
that set might cause unknown or unwanted behavior. Similarly, a
readable register may have a specified set of values that might be
read from it. Access to a register may also depend on the current
logical state of the device and this state may change as a result of

accessing the register. Altogether these factors provide a complex
set of rules for accessing the registers of a device.

When a driver fails to meet the IO specification for its device,
the device could be placed in an untenable state where it breaks or
reboots. Rebooting can mean data loss; a CD-RW writing a CD,
network card sending packets. The driver could also read incorrect
data from the device. For instance, a mouse driver thinks it is asking
for the mouse X-coordinates and the mouse thinks the driver wants
to know if interrupts are on. The data may look realistic enough
that the driver may not notice something has gone wrong. Or, in the
reverse, a device could perform unintended actions on data written
by the driver. For example, garbage written to a CD-RW, a mouse
pointer that gets stuck in a corner of the screen, a network card that
drops packets without reporting any errors, etc.

Regardless of the exact outcome, driver IO mistakes are a source
of serious bugs and should be prevented. Our work provides a lan-
guage for encoding the communication specification laid out in a
device manual and generates code in a low-level language that can
enforce the specification at compile time.

3. CLAY
We informally present the low-level language Clay which uses

dependent types to provide pre- and post conditions on functions
and statically checks these conditions for each function call. Clay
is also able to statically detect many other errors including buffer
overflows, kernel stack overflows, NULL pointer uses, freed mem-
ory uses, and aliasing errors. Static error detection moves the bur-
den of error checking from run time to compile time thereby allow-
ing the programmer to find errors while compiling and lessening
the number of errors the end user sees. Writing in Clay guaran-
tees safety, but like Proof Carrying Code [15], Clay is intended for
verification and is difficult to write in.

The Clay programming language is a type-safe variant of C/C++.
This language was developed at Dartmouth College by Chris Haw-
blitzel, Gary Morris, Eric Krupski, Ed Wei, and Lea Wittie.

Clay’s type system is similar to dependently typed languages
such as DML [22]. It uses dependent types, also known as in-
dexed or singleton types, to track variable values at compile-time.
Clay has been formalized as a typed lambda-calculus namedλ-low
. This formal language has been shown to be type-safe and the
proofs of progress, preservation, and erasure inλ-low as well as
a translation to System F [13] (polymorphic lambda-calculus) can
been found in [10].

Clay is able to express pre- and postconditions on function calls.

exists [int X; X>=0 && X<=5] Int[X] add
[int N, int M, int P; M>=0 && 2*P==N]
(Int[N] n, Int[M+4] m) {

let x = n + m;
if (x > 5) return 5;
else return x;

}

This function adds two numbers. If the sum is greater than 5, the
function returns 5, otherwise it returns the sum. This example uses
several logical-level variables, also known as specification-level
variables, ghost variables, or type-level variables. These logical-
level variables, seen in capital letters, are used at compile-time to
check the function specification but are not around at run-time. For
instance the singleton type Int[N] can be read as the set of integers
i where i is equal to N, or more formally{i : int | i == N}.

Int the above example, the type information after the function
name forms the preconditionM ≥ 0 and2 ∗ P == N so M is
positive and N is even. The return type shows a postconditionX ≥
0 andX ≤ 5 so X is between zero and five. Constructs on pre- and

postconditions are encoded in the same style as DML, DTAL [24],
and ATS [23]. They are also very similar to the conditions in ESC
Java [8]. The conditions to access a device register can be encoded
in the header of a Clay function.

Clay is also able to track logical device state by creating a new
singleton type for each state component.

@type0 State[int Parameter] = native

This type depends on an integer type variable. Values of this type
can be passed in and out of functions and the type variable can be
used in pre- and postconditions. The beginning of the declaration,
@type0, declares the type to be linear and logical rather than actual
state. These features provide Clay’s memory safety [20].

exists [int X; X>=0 && X<=5] @[Int[X],State[Y]] add
[int N, int M, int P, int Y; M>=0 && 2*P==N && N>Y]
(Int[N] n, Int[M] m, State[Y] y) {

let x = n + m;
if (x > 5) return 5;
else return @(x,y);

}

This example modifies the previous example to add a parameter for
device state, y, and includeN > Y in the precondition. We use a
tuple (@[]), common in functional languages like ML or Haskell,
to return both x and the state y.

Clay’s typechecker verifies that all function calls obey the func-
tion precondition. It also verifies that given each function precondi-
tion and function body, it can conclude that the postcondition also
holds. The verification is done using the Omega [16] constraint
checker. The typechecker also verifies that the code is free of other
errors previously mentioned.

After typechecking, the Clay compiler translates the Clay code to
C++code. Clay currently uses a templated struct containing an ar-
ray to handle tuple return types. This is the only actual C++feature
in the generated C++code which can be linked and compiled with
C code.

Since Clay’s typechecker has already verified that function pre-
and postconditions are always true, these conditions do not gener-
ate run-time checks in C++. Likewise, logical device state variables
such as the State example shown above have also been checked
statically and will only generate C++code where the typechecker
could not verify safety statically; i.e. where the device state may
have changed and the driver must query the device. The logical de-
vice state variables themselves do not generate C++variables and
therefore do not use additional space in memory. This is valuable
in systems with space constraints such embedded systems. Addi-
tionally, the static typechecking produces robust code with fewer
errors at run-time. This could lead to fewer patches later in the life
of software written in Clay.

Although Clay is expressive enough to include a driver IO speci-
fication in its code and powerful enough to statically check that the
specification is obeyed, it is a difficult language to write in. Fig-
ure 1 shows just the header of one register read function in Clay.

Clay is relevant to embedded systems programming because it
has many of the properties laid out in [9].Correctness: a Clay pro-
gram is statically guaranteed to meet the specification in it’s types
and pre- and postconditions.Concurrency: Clay has built-in fea-
tures for resource sharing and concurrency via locks [10, 20]. Clay
programs have the sametime and space constraintsas C++as well
as its ability to handleasynchronous events.

4. LADDIE
The Language for Automated Device Drivers (Laddie) was in-

tended to provide a simple and safe way to encode the IO specifica-
tions for a device driver. Laddie was developed by Lea Wittie and

native exists [u32 Q2, u1 IC, u1 ER, u3 Code,
u11 RxBytes; Q2==RxBytes]

@[Base[D,A], Busy[D,B], RxQUsed[D,Q2],
Window[D,W], Int[IC], Int[ER],
Int[Code], Int[RxBytes]]

read_RxStatus
[u32 A, u32 D, u1 B, u32 Q2, u32 W;

(W>=0 && W<=6) && (W==1 && B==0)]
(Int[A] addr, Base[D,A] base, Busy[D,B] busy,

RxQUsed[D,Q1] rxQUsed, Window[D,W] window);

Figure 1: Function header for the 3c509 RxStatus register

Derrin Pierret. Three recently developed driver specification lan-
guages, Devil [11, 17], NDL [4], and Hail [19, 25], provide much
of the expressiveness we needed but they check for most specifi-
cation usage errors at run-time. The languages are discussed in
more detail in Section 7. The authors of this paper and several un-
dergraduate computer science students looked over the syntax of
NDL, Devil, and Hail. Of the three, Hail’s syntax was the easi-
est to read and the closest match to the descriptions seen in device
manuals. Therefore, we based Laddie’s syntax on Hail.

A Laddie specification declares the IO rules for reading and writ-
ing the registers of a device. These rules give the pre- and post-
conditions for reading or writing each register. A specification is
separated into two sections. The top section lists any logical state
used in the pre- and postconditions. The bottom section lists the IO
rules for reading or writing each register. Figure 2 shows part of
the 3Com 3c509 network card specification.

4.1 Logical Device State
IO operations are frequently dependent on logical device state

which is not tracked in memory. The top of Figure 2 shows the
logical device state on a 3c509 network card. Each component
consists of a name, a type, and for integer components, an optional
set of allowed values. The types are booleans and 32-bit integers.
The booleans are C++ -style and equate to zero and one semanti-
cally. The 3c509 has several components to its logical state. Al-
though these are not stored in computer memory, the 3c509 driver
still needs to track them. Each register is accessed through an IO
port. The set of ports allocated to this device is smaller than the
number of registers the 3c509 actually uses. Therefore the regis-
ters are divided up into 7 windows1. Since this is a PIO network
card, the receive and send queues are on the device (as opposed to
in memory). The driver depends on the amount of data in these
queues. Some IO operations put the device in a busy state and it is
dangerous to do IO operations aside from querying the status regis-
ter while the device remains busy. The Statistics registers can only
be read when statistics gathering is disabled.

4.2 IO Rules
The IO rule for a register consists of basic information, subfields

within the register, and pre- and postconditions to access the reg-
ister. Below the logical state, Figure 2 shows the IO rules for four
registers.

Basic information
The basic information in an IO rule, except for the register offset, is
given using C-style assignment statements which set the variables
name, size, type, and access.

1This is a common phenomenon occurring in many other devices
such as the SMSC LAN91C111 10/100 Non-PCI Ethernet Single
Chip MAC + PHY [18]

integer Window [0:6];
integer RxQUsed;
boolean Busy;
boolean StatsEnabled;

port 0x0E {
name = Command;
size = 2;
access = write;

[15:11] command;
enum {GlobalReset, SelectRegWindow, ...,
StatsEnable=21, StatsDisable, ...};

[10:0] argument;

requires Busy==false;
requires switch command {

GlobalReset: argument==0;
StatsEnable: argument==0;
...

}
ensures switch command {

GlobalReset: Busy==true;
SelectRegWindow: Window==argument;
StatsEnable: StatsEnabled==true;
...

}
}

port 0x0E {
name = Status;
size = 2;
access = read;

[15:13] window;
[12] command_in_progress;
[11] reserved;
[7] update_stats;
...

ensures Window==window && Busy==command_in_progress;
}

port 0x08 {
name = RxStatus;
size = 2;
access = read;

[15] IC;
[14] ER;
[13:11] code;
[10:0] rxBytes;

requires Window==1 && Busy==false;
ensures RxQUsed==RxBytes;

}

port 0x00 {
name = RX_PIO_DataRead;
size = 4;
type = repeated;
access = read;

requires Window==1 && Busy==false && RxQUsed>4*count;
ensures RxQUsed==old(RxQUsed)-(4*count);

}

Figure 2: Part of the 3Com 3c509 specification

name = RX_PIO_DataRead;
size = 4;
type = repeated;
access = read;

Each IO rule must have a unique name. The register size gives the
number of bytes in this register. The size statement is optional and
the default size is 1 byte. If this is a repeated IO call, such as insl(),
then the type is repeated and the pre- and postconditions can refer
to a variable named count. The IO function will take an input count
which determines how many times it repeats the IO call. The de-
fault type is non-repeated since that is the standard IO call. The
access for a rule may be read, write, or readwrite. A readwrite ac-
cess implies that the rule is for both reading and writing the register.
The access statement is optional and defaults to readwrite. The reg-
ister offset is declared before the IO rule. Separate read and write
rules can be given for the same register provided they use different
names.

port 0x0E { name = Command; }
port 0x0E { name = Status; }

This feature is used when a register has separate rules governing
reads and writes as seen in the Command and Status register of the
3c509. It is also useful when the same port offset has a different
meaning in different windows.

Fields
Registers are frequently divided up into named fields which hold
logically distinct data. The Status register in Figure 2 is divided
into many fields, four of which are shown here.

[15:13] window;
[12] command_in_progress;
[11] reserved;
[7] update_stats;

Fields can be reserved or omitted which means they should not be
used by the driver. Bit 11 of the Status register is explicitly re-
served. Bits 10-8 are reserved implicitly. Laddie’s static semantics
forbid fields to overlap or go beyond the size of the register.

Pre- and postconditions
The precondition section is given before the postcondition section.
Both sections are optional and may be omitted. A precondition is
preceded by the keyword requires and a post condition is preceded
by ensures. The actual conditions are a set of boolean statements
on the device state and register fields.

requires Window==1 && Busy==false;
ensures RxQUsed==RXbytes;

Conditions may use the standard boolean and relational operators
as well as the+,−, and∗ math operators. The relational and math
operators perform standard C operations on 32-bit integers. We
will describe the conditions more formally in Section 5. The pre-
conditions of a readable register may not include the fields because
their value is not known yet.

The set of allowed values in a logical state declaration is an im-
plicit pre- and postcondition on every register access.

integer Window [0:6];

The restrictions on Window add the condition (Window≥0 and
Window≤6) to every pre- and post condition where Window is
mentioned.

Debugging
It is possible to write false conditions such as

requires 1>5;
ensures Window<1 && 3<Window;

however, these will be caught during a consistency test that checks
for pre- and postconditions that are impossible to satisfy. This test
and Laddie’s static semantic checking allow specifications to be
checked for errors before writing the Clay portion of the driver.

Postconditions referring to old device state
Postconditions may refer to old device state using the keyword old.

ensures RxQUsed==old(RxQUsed)-(4*count);

This postcondition relates the postcondition value of device state to
its precondition value.

The remaining topics in Laddie are syntactic sugar for notational
convenience.

Enumerated field values
Fields may be declared with an enumerated set of allowed values
as seen in the command field of the Command register

[15:11] command;
enum {GlobalReset, SelectRegWindow, ...,
StatsEnable=21, StatsDisable, ...};

The format is similar to the standard C enum. On a write, this field
can only take one of the enumerated values. On a read, assum-
ing the register was readable, the device will return one of those
values for this field. (Note: Enum values on a read can only be
enforced dynamically and constitute a check on the device rather
than the driver. Laddie is primarily intended for statically checking
the driver.)

Conditions on the whole IO value
Conditions can refer to the whole read or written value rather than
to its fields. The preconditions of a readable register may not in-
clude the value because it is not known yet. This avoids making a
special field that is the size of the whole register when the register
in not normally partitioned into fields. We use the keyword value to
make this problem simpler to express. The 3c509 does not use this
feature but the Signature register of the Logitech busmouse driver
does.

requires value == 0xa5;

Switch statements
For convenience, a switch statement on a register field may be used
instead of a complex boolean expression.

ensures switch command {
SelectRegWindow : Window==argument;
StatsEnable : StatsEnabled==true;
...

}

is equivalent to

ensures ((command==SelectRegWindow && Window==argument)
|| command!=SelectRegWindow)
&& ((command==StatsEnable && StatsEnabled==true)
|| command!=StatsEnable)
&& ... ;

The body of each switch case is a boolean statement. Like C,
Laddie switch statements have an optional default case.

Multiple pre- or postconditions
Multiple conditions may be given for a register. In the Command
register of the 3c509, we used multiple preconditions for simplicity.

requires Busy==false;
requires switch command { ... }

The set of preconditions is interpreted as if there was an&& be-
tween them.

4.3 Relationship to Manual
Register information in a device manual is frequently presented

in chart form with a text description of each fields and any pre- and
post conditions.

For example, the Interrupt Enable register (IER), port 0x01, of
the National Semiconductor PC16550D UART [6] is shown in chart
form as

bits 0 1 2 3 4..7
field ERBFI ETBEI ELSI EDSSI zeros

The DLAB field, in the Line Control register, is explained as
follows:

“This bit is the Divisor Latch Access Bit (DLAB). It
must be set high (logic 1) to access the Divisor Latches
of the Baud Generator during a Read or Write opera-
tion. It must be set low (logic 0) to access the Receiver
Buffer, the Transmitter Holding Register, or the Inter-
rupt Enable Register.”

From this we see that the IER may only be accessed when the
DLAB is zero. The IER allows 1 byte read or write access, bro-
ken into four fields and bits 4. . . 7 should be written with zeros
(the same as a reserved field) and reading those bits has no mean-
ing. Therefore the Laddie specification for the IER part of the
PC16550D UART is

integer DLAB [0:1];

port 0x1 {
name=IER; size=1; access=readwrite;
[0] ERBFI;
[1] ETBEI;
[2] ELSI;
[3] EDSSI;
requires DLAB==0;

}

We chose to make the DLAB state component an integer to match
the description in the manual. It would be equally correct to use a
boolean.

The 3c509 registers in the 3Com manual [5] are explained in a
nearly identical fashion.2

5. TRANSLATION OF LADDIE TO CLAY
Although our eventual target language is C, we first compile Lad-

die to Clay in order to leverage Clay’s type system and static type-
checking. Clay is able to express the invariants on registers and
logical state seen in a Laddie specification. A formal translation of
Laddie to Clay is available at [21]. Due to space considerations, we
present an informal translation here.

Several features of Laddie are syntactic sugar to provide ease-of-
use. Our informal translation uses a desugared version of Laddie.
This version includes logical device state, basic register informa-
tion, fields, pre- and postconditions, and references to old state. All
other features of Laddie can be simplified into this desugared for-
mat.

Because Clay is a language without side effects, it must drop to
native C++to perform any IO calls or memory accesses. Therefore,
each IO function in Clay makes a call to native C++code where the
actual IO is performed. A Laddie specification produces three Clay
files: IO function stubs in Clay, the actual IO functions in C++, and
macros to facilitate using the Clay IO functions.

2The 3Com copyright forbids reproduction of the 3c509 manual in
any form.

native exists [u32 SRxQUsedout, u3 Fcode,
u11 FrxBytes, u1 Fincomplete, u1 Ferror;
(RxQUsedout==G0)]

@[Statebase[D,A], StateBusy[D,SBusyin],
StateRxQUsed[D,SRxQUsedout],
StateWindow[D,SWindowin], Int[Fcode],
Int[FrxBytes], Int[Fincomplete], Int[Ferror]]

read_RxStatus
[u32 A, u32 D, u1 B0in, u32 SRxQUsedin,

u32 SWindowin; (SWindowin>=0 && SWindowin<=6)
&& (SWindowin==1 && SBusyin==0)]

(Int[A] addr, Statebase[D,A] base,
StateBusy[D,SBusyin] cap_Busy,
StateRxQUsed[D,SRxQUsedin] cap_RxQUsed,
StateWindow[D,SWindowin] cap_Window);

Figure 3: Generated Clay IO function stub for the RxStatus
register

5.1 The Clay IO function stub
The generated Clay IO function stub for the RxStatus register

from Figure 2 is shown in Figure 3. Notice that it is very similar to
the handwritten Clay function stub in Figure 1. The basic format of
the produced Clay IO stub is

native postcondition return_type
function_name precondition (inputs);

The native keyword in Clay indicates that this is a function stub
with a matching function in native C++code.

Function input
Each IO function requires the base address of the device, the regis-
ter offset, and any data if the IO is a write. Since the base address is
used in all IO functions, it is omitted in Laddie and added back in
to the generated Clay code. The function inputs therefore include
the base address and its capability as well as capabilities for each
logical device state and if this is a write function, the fields. The
register offset is fixed for each IO function and will be used in the
C++IO function.

(Int[A] addr, Statebase[D,A] base, // base address
StateBusy[D,SBusyin] cap_Busy, // busy state
StateRxQUsed[D,SRxQUsedin] cap_RxQUsed,
StateWindow[D,SWindowin] cap_Window);

Each capability has two type variables, one for the value of the
capability and one for the memory address of the driver data, al-
ways D. We append “in” and “out” to the name of type variables
for logical states to differentiate input and output (this allows us to
implementold). If this is a write function, we generate a singleton
integer with one type variable for each field. The F and S designa-
tions on field and state type-variables are used to match Laddie’s
flexible identifier names with Clay’s more rigid naming scheme
which requires an initial capital letter for certain identifiers. We
also generate a singleton integer for the base address of the device
(Int[A] addr).

Precondition
The precondition declares all of the type variables used in the in-
puts and includes the register precondition as well as the global
conditions on any logical device states.

[u32 A, u32 D, u1 SBusyin, u32 SRxQUsedin,
u32 SWindowin; (SWindowin>=0 && SWindowin<=6)
&& (SWindowin==1 && B0in==0)]

The RxStatus register example shows declarations for the A and D
variables as well as those for the three states. Each type variable

actually has kind int but is shown here using syntactic sugar which
abbreviates

int X; X ≥ 0 && X < 4294967292

to u32 X where X is a 32-bit unsigned integer. Likewise, the boolean
Busy has an abbreviated kind of u1. The global condition allows
Windows between 0 and 6 and the precondition from the RxStatus
register forces Window to be 1 and Busy to be 0 (false).

Function name
For simplicity, we coalesce the register name and access into the
function name, producing read_RxStatus in our example.

Return type
The return type is a tuple containing all of the capability types and
since this is a read function, the field types.

@[Statebase[D,A], StateBusy[D,SBusyin],
StateRxQUsed[D,SRxQUsedout],
StateWindow[D,SWindowin],
Int[Fcode], Int[FrxBytes], Int[Fincomplete],
Int[Ferror]]

As seen in the inputs, the capability types have two type variables
and the field types are singleton integers. Any type variables which
are the same as those in the inputs use the same names here. For in-
stance, the device base address (A) and the value of Busy (SBusyin)
have not changed. Any new values, such as the updated value of
the logical state RxQUsed or the returned fields, use a new type
variable.

Postcondition
The postcondition has the same general contents as the precondi-
tion. Any new type variables are declared using Clay’s syntactic
sugar to simplify the declarations. Any relevant global conditions
and the register postcondition are shown here.

exists [u32 SRxQUsedout, u3 Fcode, u11 FrxBytes,
u1 Fincomplete, u1 Ferror; (SRxQUsedout==FrxBytes)]

The exists keyword declares the return type to be an existential
where the type variables declared here have some value which sat-
isfies the postcondition.

5.2 Types for logical state
Laddie also generated a type for each logical device state and for

the base address of the device.

@type0 StateWindow [int Device, int Val] = native
@type0 StateBusy [int Device, int Val] = native
@type0 Statebase [int Device, int Val] = native

Each type has two type variables. The first is the driver memory
address. This will be the same for all states associated with a spe-
cific driver and device. The driver address is used to link all of the
capabilities to a specific driver and device so the states of two dif-
ferent devices cannot be accidentally interchanged. This allows the
produced code to scale for multiples of the same device or different
devices that happen to have the same logical state names.

Unlike the logical device state components, the base address is
a state component of the driver and is stored in driver memory.
Although we could have used the memory capability for the base
address, we chose to create a new state component so that Laddie
did not need to know the exact location of the base address within
driver memory.

5.3 Native C++IO function
There is a matching C++function for every Clay IO function

stub.

inline struct Clay_Obj<4> read_RxStatus
(unsigned long addr)
{

int value = inw(addr + 0x08);
struct Clay_Obj<4> c;
c.A[0] = (value >> 11) & 7; // bits 11:13
c.A[1] = (value >> 0) & 2047; // bits 0:10
c.A[2] = (value >> 15) & 1; // bit 15
c.A[3] = (value >> 14) & 1; // bit 14
return c;

}

When Clay compiles, all of type annotations and logical device
state values are erased leaving us with a function that takes and
returns only the base address and fields. A Clay_Obj is a struct
containing an array (A) of a given length. It matches the Clay tuple
that is returned by the Clay function stub. The necessary bit twid-
dling is done for each register field [i:j] using
(value >> i) &

Pj−i
n=0 2n (value << i) &

Pj
n=i 2n

for reading for writing
a similar C++function is produced for register writes.

5.4 IO macros
Finally, because all Clay IO stubs generated by Laddie are repet-

itive and take the base address as well as a collection of known
capabilities, Laddie generates a macro which takes the name of in-
put or output variables.

#define R_RxStatus(code, RxBytes, IC, ER) \
let [] (s_baseSTATE##2, \

s_BusySTATE##2, s_RxQUsedSTATE##2, \
s_WindowSTATE##2, code, RxBytes, IC, ER) = \

read_RxStatus(IOADDR, s_baseSTATE, s_BusySTATE, \
s_RxQUsedSTATE, s_WindowSTATE); \

s_BusySTATE = s_BusySTATE##2; \
s_RxQUsedSTATE = s_RxQUsedSTATE##2; \
s_WindowSTATE = s_WindowSTATE##2; \
s_baseSTATE = s_baseSTATE##2;

A programmer using the generated Clay code would replace unsafe
IO calls like

rx_status = inw(ioaddr + RX_STATUS);
short error = rx_status & 0x3800;
short pkt_len = rx_status & 0x7ff;

with its respective safe IO call and macro usage.

R_RxStatus(code, pkt_len, complete, error);

6. RESULTS
Laddie is simple language to use and we were able to write Lad-

die specifications for several drivers

• 3Com 3c509 Network Interface Card

• National Semiconductor PC16550D UART

• National Semiconductor DP8573A Real Time Clock

These specifications took less than an hour to write after we had
thoroughly read the respective device manuals published by the
manufacturers. Our Laddie specifications are available at [21].

Simple timing tests conducted on a handwritten Clay 3c509 driver
and Donald Becker’s3 C 3c509 [2] driver using a series of ping
packets indicate only a slight increase in run time for the Clay
3c509 driver.

To evaluate the decrease in programmer workload, we can make
code length comparisons between Laddie, Clay, and C.
3Donald Becker has written many of the Ethernet device drivers for
Linux.

C 3c509 driver
Donald Becker’s 3c509 driver is around 800 lines of code. It is
much shorter than the equivalent Clay driver since it does not in-
clude the IO specification.

Clay 3c509 driver
The Clay 3c509 driver has four sections of code:

Portion of Driver Lines of Code
IO interface 1188
driver functions 1939
system code 1090
capability handling code 411
total 4628

The driver functions are the main body of the driver. The IO
code includes all of the IO functions, their native C++translations
and their macros. The system code is made up of the included
Linux .h files for the original driver since they had to be translated
into Clay. However, the .h files are not driver specific and could be
re-used. The capability handling code converts the driver memory
capability from a tuple to individual memory capabilities and back
again. The IO code is about 25 percent of the total Clay code.

Laddie portion of the 3c509 driver
Laddie needed 314 sparse lines of code to replace the Clay IO code.
(The generated Clay was 1197 dense lines of code, very similar
to the original 1188 hand-written lines of Clay code). The main
reason for the dramatic difference between Laddie IO code length
and Clay IO code length is that the Clay IO code is very repetitive.
The main things that differ from function to function are data size,
offset, and pre- and postconditions. Since Laddie’s syntax provides
a concise way to present the necessary information, the generator
is able to provide the rest.

7. RELATED WORK
The languages that have the most in common with Laddie are

Devil [11, 17], NDL [4], and Hail [19, 25]. Both these languages
and Laddie provide a device driver specification for IO operations
on registers. Devil, NDL, and Hail drivers are shorter than C drivers
and have similar performance times. Laddie allows much of the
functionality of these languages in its register IO specifications.
However all three other languages provide safety through some
standard static checks and run-time checks on the IO specifications
while Laddie compiles to Clay which enforces most IO specifica-
tion invariants at compile time. This section presents a comparison
of these languages with Laddie. It also presents other related static
verifiers and type safe languages.

Devil
Devil provides a specification for IO operations on registers as well
as a range of legitimate port offsets from the base address and a set
of variables tied to register fields. The variables provide a way to
track device state at run time. Devil supports pre- and postcondi-
tions on IO operations.

Unlike Laddie, Devil is able to define a variable as the concate-
nation of subfields from several different registers. The compiled
Devil code includes read and write functions which hide the details
of how each variable is assembled. This allows simpler read and
write access to complex variables.

Both Devil and Laddie statically guarantee that read/write ac-
cess and size constraints are obeyed in the driver functions. Both
languages can track logical device state in pre- and postconditions;
Devil via standard variables and Laddie via ghost variables.

Conditions in Devil are variable assignments that must be per-
formed before or after the IO operation respectively. In compari-
son, Laddie allows more flexible conditions because its conditions
are boolean expressions on ghost variables. Devil’s conditions only
allow equality rather than the full range of boolean operators. Lad-
die’s ghost variables only exist at compile time so they do not use
extra space in memory during run time. However, Laddie, unlike
Devil, is unable to refer to standard program variables in its pre-
and postconditions.

NDL
NDL builds on Devil and uses similar syntax. An NDL specifica-
tion includes IO operations on registers and a collection of driver
functions. It also includes a state machine for the logical states a
device may be in (reading, sleeping, etc..). Preconditions on the
current state are used in the IO specification. NDL does not ap-
pear to support post conditions. Both NDL and Laddie allow the
same IO location to have two different rules for reading and writ-
ing. NDL code compiles to C and uses runtime checks to enforce
its preconditions and state machine transitions.

Unlike Laddie, the entire driver is written in NDL’s C-like driver
syntax. This has the advantage of allowing NDL to support buffer
copying to and from a device in one or two lines of code, an oper-
ation which normally takes many IO operations.

Hail
Hail provides a specification for IO operations and invariants on
registers as well as an address space description and a description
of the device instantiation. The Hail compiler is capable of catch-
ing inconsistencies in a specification. The Clay compiler can catch
similar inconsistencies in a Laddie specification. Like Devil, the
Hail compiler generates IO functions in C with optional run time
checks on the invariants. The actual driver functions of a Hail driver
are written in C using the generated IO functions.

According to the HAIL website, the address space descriptions
are not implemented yet in a HAIL compiler. Laddie currently pro-
vides #define stubs for the different possible addressing strategies,
but Hail’s syntax is easier to use and we may adopt this strategy in
the future.

SDV
Microsoft SDV, static driver verifier, works on Windows device
drivers based on the Windows Driver Model [12, 1]. The SDV
statically checks that the driver obeys a set of built-in rules about
the driver/kernel interface. The project is similar to Laddie in that
both statically verify a driver’s specification usage. The SDV fo-
cuses on a fixed driver/kernel specification for the Windows Driver
Model while Laddie focuses on a user-defined driver/device spec-
ification which can be tailored to each device. The SDV is part of
the SLAM toolkit.

Type safe languages
Typed Assembly Language [13] is similar to Clay in that both ac-
cess memory through load and store primitives and use types to
guarantee memory safety. TAL is also too low-level to easily write
drivers. Popcorn, a safe C-like language which compiles to TAL
does not support the complex pre- and postconditions needed by
safe driver IO.

Hoare Type Theory [14] adds types to the standard Hoare triple
to form {P} x:t {Q} where the pre- and postconditions can depend
on the types. This is similar to the pre- and postconditions on Clay
functions. This language is currently formalized but not imple-
mented.

The Vault [7] programming language embeds keys to manage
temporal events in the types of system resources. Keys, like the ca-
pabilities of Clay, are associated with a resource and must be held
to access the resource. Vault allows a notion of pre- and postcon-
ditions with key states. However, they are less flexible than the
arithmetic constraints, relations, and inequalities of Clay.

8. CONCLUSIONS AND FUTURE WORK
The combination of Laddie and Clay provides a usable speci-

fication language for device IO access functions and static type
safety guarantees that the driver uses the device access functions
in accordance with the specification. Using Laddie we have written
several device IO specifications which are available at [21]. These
specifications could be produced by the device manufacturer and
distributed to driver writers along with the standard manual.

Currently, Laddie only handles the IO end of a driver. The re-
mainder of the driver must still be in Clay, a more difficult lan-
guage to use. We expect to be able to automate the translation of
the system code (C structs such as the driver memory), from C to
Clay with a reasonably straight forward compiler which will also
generate the capability-handling code needed to access these data

structures.
in Laddie still in Clay

IO driver system capability
code functions code code

We have left an easier language for writing the remainder of the
driver as future work.

A mix of Clay’s type system and function pre- and postcondi-
tions with a language, such as Hume [9], primarily intended for em-
bedded systems might yield a simpler intermediate language with
guarantees of correctness and space and time costs for constrained
systems.

9. AVAILABILITY
An ML program formally translating Laddie to Clay, the Laddie

and Clay compilers and Users Guides, and the Laddie specifica-
tions of several devices are available at [21].

10. REFERENCES
[1] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin,

Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek,
Sriram K. Rajamani, and Abdullah Ustuner. Thorough static
analysis of device drivers. InEuroSys Conference, Leuven,
Belgium, 2006.

[2] Donald Becker. 3Com EtherLink III 3c5x9 driver v. 1.18.
http://joshua.raleigh.nc.us/docs/
linux-2.4.10_html/284303.html, 2000.

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An empirical study of operating system
errors. InACM Symposium on Operating Systems Principles,
pages 73–88, Banff, Alberta, Canada, 2001.

[4] Christopher L. Conway and Stephen A. Edwards. NDL: A
domain-specific language for device drivers. InACM
Conference on Languages, Compilers, and Tools for
Embedded Systems, Washington, DC, June 2004.

[5] 3Com Corporation. Etherlink III Parallel Tasking ISA, EISA,
Micro Channel, and PCMCIA Adapter Drivers Technical
Reference. 1-800-NET-3Com, August 1994.

[6] National Semiconductor Corporation. PC16550D Universal
Asynchronous Receiver/Transmitter with FIFOs.
http://www.national.com, June 1995.

[7] Robert DeLine and Manuel Fähndrich. Enforcing high-level
protocols in low-level software. InACM SIGPLAN
Conference on Programming Language Design and
Implementation, Snowbird, Utah, June 2001.

[8] Cormac Flanagan, K. Rustan Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static
checking for Java. InACM SIGPLAN Conference on
Programming Language Design and Implementation, Berlin,
Germany, 2002.

[9] K. Hammond and G. Michaelson. HUME: A domain specific
language for real-time embedded systems. InInternational
Conference on Generative Programming and Component
Engineering, Erfurt, Germany, October 2003.

[10] Heng Huang, Lea Wittie, and Chris Hawblitzel. Formal
properties of linear memory types. Technical report,
Dartmouth College, 2003.

[11] F. Mérillon, L. Ŕeveill̀ere, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
USENIX Symposium on Operating Systems Design and
Implementation, San Diego, CA, October 2000.

[12] Microsoft. Static driver verifier - finding driver bugs at
compile-time. http://www.microsoft.com/whdc/
devtools/tools/sdv.mspx, 2007.

[13] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From system F to typed assembly language.ACM
Transactions on Programming Languages and Systems,
21(3):528–569, May 1999.

[14] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal.
Polymorphism and separation in Hoare type theory. In
International Conference on Functional Programming,
Portland, Oregon, 2006.

[15] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. InUSENIX Symposium on
Operating Systems Design and Implementation, Seattle,
Washington, October 1996.

[16] William Pugh. The Omega project.
http://www.cs.umd.edu/projects/omega/, 2007.

[17] L. Réveillère, F. Mérillon, C. Consel, R. Marlet, and
G. Muller. The Devil language. Technical Report 1319,
IRISA, Rennes, Francs, 2000.

[18] SMSC. LAN91C111 10/100 Non-PCI Ethernet Single Chip
MAC + PHY. http://www.smsc.com, 2005.

[19] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: A
language for easy and correct device access. InACM
Conference on Embedded Software, Jersey City, NJ,
September 2005.

[20] Lea Wittie.Type-Safe Operating System Abstractions. PhD
thesis, Dartmouth College, 2004.

[21] Lea Wittie.
http://www.eg.bucknell.edu/∼lwittie/research.html, 2007.

[22] Hongwei Xi.Dependant Types in Practical Programming.
PhD thesis, Carnegie Mellon University, 1998.

[23] Hongwei Xi. Applied type system (extended abstract). In
post-workshop Proceedings of TYPES 2003. Springer-Verlag
LNCS 3085, 2004.

[24] Hongwei Xi and Robert Harper. A dependantly typed
assembly language. InInternational Conference on
Functional Programming, Florence, Italy, 2001.

[25] W. Yuan, J. Sun, and N. Islam. HAIL language specification
and user guide. Technical Report DCL-TR-2005-0006,
DoCoMo USA Labs, 2005.

