
A Garbage-Collecting Typed Assembly Language

Chris Hawblitzel
Microsoft Research

Heng Huang
Dartmouth College

Lea Wittie
Bucknell University

Juan Chen
Microsoft Research

Abstract
Typed assembly languages usually support heap allocation safely,
but often rely on an external garbage collector to deallocate objects
from the heap and prevent unsafe dangling pointers. Even if the
external garbage collector is provably correct, verifyingthe safety
of the interaction between TAL programs and garbage collection is
nontrivial. This paper introduces a typed assembly language whose
type system is expressive enough to type-check a Cheney-queue
copying garbage collector, so that ordinary programs and garbage
collection can co-exist and interact inside a single typed language.
The only built-in types for memory are linear types describing
individual memory words, so that TAL programmers can define
their own object layouts, method table layouts, heap layouts, and
memory management techniques.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.3.3 [Programming Languages]: Language Constructs and
Features—Dynamic storage manangement

General Terms Languages, Verification

Keywords Typed assembly language, garbage collection

1. Introduction
Operating systems have traditionally protected programs from one
another using run-time checking of memory addresses, basedon
page tables or segments. Many recent projects have used safelan-
guages, such as Java and C#, to replace traditional operating sys-
tem protection mechanisms. Language-based mechanisms promise
more flexible and fine-grained protection than traditional mech-
anisms, but bring new challenges. In particular, a buggy imple-
mentation of a safe language can invalidate the language’s safety
guarantees and destroy the protection between programs. Since
a language’s implementation typically consists of a large com-
piler and large run-time system, there is a large potential for such
bugs. Proof-carrying code [17] and typed assembly language[15]
eliminate the compiler and some of the run-time system from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’07 January 16, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-393-X/07/0001. . . $5.00

this “trusted computing base”, but typically still requirea trusted
garbage collector, because the safety of the garbage collector’s fun-
damental operation (“free memory”) is difficult to prove in the pres-
ence of aliased data structures with complicated types.

This paper presents a typed assembly language calledGTAL,
whose type system is expressive enough to verify the safety of a
garbage collector for a simple object-oriented language. In contrast
to earlier work on typed garbage collectors [25, 13], GTAL delib-
erately omits any built-in definitions of heaps, objects, allocation,
and deallocation. Instead, it provides programmers with a flat array
of memory words, and programmers define their own memory lay-
outs and memory management routines by carving up the array of
words to form objects, garbage collection tables, semi-spaces, and
so on. This allows programmers to create diverse implementations
of memory allocators and deallocators, and to tailor the layout of
memory to match the needs of different allocators and deallocators.
For example, the garbage collector presented in this paper allocates
data contiguously in a semi-space, and prepends each objectwith a
header word pointing to a method table containing the size ofthe
object. The collector uses the size in the table to help scan through
a queue of contiguous objects. Other collectors are free to imple-
ment different strategies, such as putting objects of the same size
on the same page (as done by BiBoP collectors).

In place of built-in types for heaps and objects, GTAL includes a
linear logic for encoding new types from individual memory words.
The logic is simple, yet powerful enough to encode mutually recur-
sive classes with inheritance, overriding, and polymorphic meth-
ods. GTAL’s inclusion of a linear logic is similar to the LTT lan-
guage’s inclusion of the linear LF logic [6]. However, whileLTT
used a linear logic to augment an otherwise standard type system,
GTAL goes farther: the logic doesn’t augment the type system—
the logicis the type system. We mean it when we say that program-
mers encode data types using logical formulas: even the type“int”
is encoded in the logic, rather than being built into the typesys-
tem. Recursive types pose a challenge for such a strictly logic-based
approach, since unrestricted recursive types can easily destroy the
soundness of a logic. GTAL addresses this challenge using a modal
operator that shields the logic from unrolled recursive types.

The rest of the paper is as follows. Section 2 compares GTAL
to previous work. Section 3 describes the logic embedded inside
GTAL. Section 4 then introduces the typed assembly language, and
Section 5 summarizes the proofs of soundness for the logic and the
assembly language. Section 6 uses the logic to express heapsand
heap objects, and Section 7 describes the GTAL code that garbage
collects these objects. (The complete, mechanically-type-checked
GTAL code for the garbage collector is available online [8].)

2. Background and related work
GTAL builds on recent work in type systems and proof-carrying
code. Wang and Appel [25] observed that by copying live data out
of one memory region into another, and then freeing the first region,
a programmer can implement a copying garbage collector entirely
from safe language primitives. In this approach, the type system
tags every pointer with a region annotation, and thereby prevents
programs from dereferencing pointers to freed regions. Thedetails
of this approach are problematic, though; Wang and Appel required
ad hoctype system extensions to type forwarding pointers.

Monnier and Shao [14] overcame some of the problems by in-
troducing a language supporting regions, alias types [22],and an
embedded proof language. Nevertheless, the regions still require
ad hocextensions to type-check Cheney queue scanning [26], and
the large number of features in the type system increase the trusted
computing base. Furthermore, the region-based approach imple-
ments only copying collectors, not mark-sweep collectors.

Because of the lack of generality and large trusted computing
base in current typed assembly languages, many researchersare
working on foundational proof-carrying code (FPCC), whichin
principle can mechanically prove the safety of typed assembly lan-
guages and the correctness of their associated run-time systems.
Much progress has been made, but just proving the safety of an
FPCC systemwithout garbage collection [28, 4, 3] is challenging.
To add garbage collection to an FPCC system, one must mechani-
cally prove the safety of the TAL, the correctness of the collector,
and the correctness of the interaction between the TAL and the col-
lector. As far as we know, this has not been done yet, although
enough pieces exist to make it plausible. Birkedalet al. [2] for-
mally proved the correctness of a copying collector by showing
that the collector produces a copy that is isomorphic to the original
live data. Like Birkedalet al., we establish and prove invariants for
a copying collector, though our invariants stop short of expressing
graph isomorphism, which is stronger than necessary to prove the
garbage collector’s safety. Unlike the collector of Birkedal et al.,
our garbage collector supports header words and GC tables, and
our tables can contain embedded code pointers.

The FPCC approach is daunting enough to make consideration
of alternatives worthwhile. We follow an approach introduced by
Crary and Vanderwaart’s LTT system [6] and Shaoet al.’s TL
system [20]. These systems invert the FPCC approach: ratherthan
proving the soundness of a computation language’s type system
inside a logic, they embed a logic (linear LF for LTT and CIC for
TL) inside a computation language’s type system. This results in a
somewhat larger trusted computing base than FPCC, since both the
logic and the computation language must be trusted, but it makes a
programmer’s job easier, since no foundational proof is required to
use the computation language.

Jia et al. [12] embed a linear logic inside a typed assembly
language to reason about stack allocation. Their logic seems spe-
cialized for reasoning about stacks, though — it is not expressive
enough to type check our garbage collector. Zhu and Xi’s ATS [29]
embeds a linear logic in a higher-level language, to supportsafe rea-
soning about ephemeral properties of data structures, though they
apply ATS to simple data structures, such as arrays, rather than to
implementing heaps and garbage collection.

3. A logic
The rest of this paper applies the embedded logic approach ofLTT,
TL, ATS, and Jiaet al. to heap objects and garbage collection. The
embedded logic must satisfy the following criteria:

• The logic should be general enough to reason about simple
propositions, equality, and integer inequality. For example, Sec-
tion 7 uses integer arithmetic to express a copying garbage col-

lector’s from-space and to-space invariants, establishing differ-
ent invariants for different memory ranges in each space. (LTT
and TL, building on well-known, general-purpose logics, sat-
isfy this criterion easily.)

• The logic should support linear reasoning about memory. This
lets the collector easily change the types of memory words
when it frees and reallocates memory. (LTT, ATS, and Jiaet
al’s approach satisfy this criterion.)

• The logic should support unrestricted recursive specifications,
for two reasons. First, the specification of objects in Section
6 is recursive, since objects’ classes may refer to each other
recursively. Second, the specification of heaps in Section 7is
recursive: heaps contain objects, objects contain header words,
header words point to method tables, method tables point to
code blocks, and the code blocks take the current heap as an
argument. (ATS satisfies this criterion. TL supports “inductive
definitions”, but these are too restrictive to capture the recursive
definitions of sections 6 and 7 directly.)

Given a logic satisfying these criteria, it is straightforward to define
the heap and garbage collector data types; the definitions ofob-
jects, heaps, and garbage collection in Sections 6 and 7 are lengthy
but unsurprising. The proofs about the data types are straightfor-
ward enough to be written by hand, without a proof assistant,and
mechanically checked. For example, the “heap extension lemma”,
which proves that extending the heap with a newly allocated value
preserves all existing invariants in the heap, is about 200 lines of
GTAL’s logic. The rest of this section describes GTAL’s logic,
which combines ideas from LTT, TL, ATS, and Jiaet al.’s logic
in a way that meets the requirements above.

3.1 Proof terms and types

Figure 1 specifies the abstract syntax of GTAL’s logic. The logic
is based onFω [19], with support for linearity [23]. It includes
standard function typesτ1 (τ2 and pair typesτ1⊗ τ2 from linear
logic, type variablesA, polymorphic types∀A : κ.τ , existential
types ∃A : κ.τ , as well asFω-style functionsλA : κ.τ and
applicationsτ1 τ2 at the type level. Kindsκ includeT for types,
N for numbers, andR for register names; Figure 2’s rules assign
kinds to types. Following Xi and Pfenning [27], register namesr
and numbersn live at the type level, rather than the term level; this
simplifies the meta-theory by avoiding full-blown dependent types.
Both the term and type levels contain elimination constructs for
numbers (the term-level construct implements induction, and the
type-level construct implements primitive recursion).

Given basic function and polymorphic types, the type system
can encode true (aka “unit”), false (aka “void”), negation,if-and-
only-if, choice of A or B (aka additive conjunction, “A&B”),
union ofA andB (aka additive disjunction, “A⊕B”), and equality
(A = B) [11]:

True = ∀A :T.A (A
False = ∀A :T.A
Not = λA :T.A (False
Iff = λA :T.λB :T. !(A (B)⊗ !(B (A)
Choice = λA :T.λB :T.∃X :T.X⊗ !(X (A)⊗ !(X (B)
Union = λA :T.λB :T.∀C :T.∀X :T.

C (!(C (A (X) (!(C (B (X) (X
Eqκ = λA :κ.λB :κ.∀F :κ→ T.F A (F B

As in linear logic, types are linear by default, and are only nonlinear
if there is a ! symbol in front of them. Thus, a function of type
(!τ1) (τ2 may useτ1 multiple times or not at all, while a function
of type τ1 (τ2 (whereτ1 is not of the form !τ) must use its
argument exactly once.

kind κ = T | N | R | κ1 → κ2

number n = 0 | s(n)

register r = r1 | . . . | rk

location ` = n | r

type τ = !τ | τ1 (τ2 | τ1 ⊗ τ2 | ©τ | rec τ

| A | ∀A :κ.τ | ∃A :κ.τ | λA :κ.τ | τ1 τ2

| 0 | s(τ) | elim τn τz τs

| r | Regτ1 τ2 | Mem τ1 τ2 | Codeτ1 τ2

pattern p = x | !x | !(p) | A, p | p, p

term e = x | !e | letp = e1 in e2 | λp :τ.e

| e1 e2 | e1, e2 | λA :κ.e | e τ

| elim τn τf ez es | ©e | e1
©<< e2 | fact

| pack[τ1, e] asτ2 | code(n)[τ1, . . . , τn]

value v = !v | λp :τ.e | v1, v2 | λA :κ.e | ©e | fact

| pack[τ1, v] asτ2 | code(n)[τ1, . . . , τn]

tvar ctxt ∆ = {} | ∆, A 7→ κ

var ctxt Γ = {} | Γ, x 7→ τ

code ctxt Υ = {} | Υ, n 7→ τ

mem ctxt Ψ = {} | Ψ, ` 7→ n

ctxt C = ∆;Γ;Υ;Ψ

Figure 1. Proof term and type syntax

∆ ` τ : T

∆ ` !τ : T

∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 (τ2 : T
∆ ` r : R

∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 ⊗ τ2 : T
∆ ` 0 : N

∆ ` τ : N

∆ ` s(τ) : N

∆ ` τn : N ∆ ` τz : κ ∆ ` τs : N→ κ→ κ

∆ ` elim τn τz τs : κ

∆, A : κ ` A : κ
∆, A : κ ` τ : T

∆ ` ∀A :κ.τ : T

∆, A : κ ` τ : T

∆ ` ∃A :κ.τ : T

∆, A : κa ` τ : κb

∆ ` λA :κa.τ : κa → κb

∆ ` τf : κa → κb ∆ ` τa : κa

∆ ` τf τa : κb

∆ ` τ : κ

∆ ` ©τ : κ

∆ ` τ : κ→ κ

∆ ` rec τ : κ

∆ ` τr : R ∆ ` τn : N

∆ ` Regτr τn : T

∆ ` τm : N ∆ ` τn : N

∆ ` Mem τm τn : T

∆ ` τm : N ∆ ` τ : T

∆ ` Codeτm τ : T

Figure 2. Kinding rules

The typing rules for terms, shown in Figures 4 and 5, enforce
the linearity requirements by distinguishing between linear variable
bindings and nonlinear variable bindings [23]. The environmentΓ
either binds a variable to a type linearly (x : τ), in which case
x must be used exactly once, or nonlinearly (!x : τ), in which
casex may be used more than once or not at all. Pattern matching
introduces new variables into the environment. Figure 4 shows the
typing rules for patterns: the judgment` p : τ =⇒ ∆;Γ says
that the patternp, matching a value of typeτ , introduces a set
of type variables∆ and value variablesΓ into the environment.
The patternx introduces a linear bindingx : τ into Γ, and the
pattern !x introduces a nonlinear binding!x : τ into Γ. The
pattern !(p) discards a “!” operator, while patterns(p1, p2) and
[A, p] unpack pairs and existential types. For example, the term
λ(x, !y) : τx⊗ !τy.(x, y, y) binds x linearly andy nonlinearly;
this term has typeτx⊗ !τy (τx ⊗ τy ⊗ τy . The termλ(x, !y) :
τx⊗ !τy .(x, x, y), on the other hand, is ill-typed because it uses the
linearly bound variablex twice. The notationΓ = Γ1, Γ2 indicates
that Γ and Γ1 and Γ2 have identical nonlinear assumptions, but
that Γ′s linear assumptions are split betweenΓ1 and Γ2. The
notationΓ = !Γ1 indicates thatΓ andΓ1 have identical nonlinear
assumptions, but thatΓ has no linear assumptions. The typing rule
that concludes!e : !τ , for example, requires thate type-check in a
purely nonlinear environment (!Γ ` e : τ), so that expressions of
type !τ cannot carry linear assumptions; this makes it safe to freely
discard and duplicate expressions of type!τ . Figure 1 extends the
Γ1, Γ2 and !Γ1 notations to cover all the environments in a context
C = ∆;Γ;Υ;Ψ, where the type variable environment∆ and
the code environmentΥ contain only nonlinear assumptions, the
location environmentΨ contains only linear assumptions, and, as
described above, the variable environmentΓ contains both linear
and nonlinear assumptions.

The type system uses linearity to enablestrong updatesto regis-
ters and memory [2, 22]. By “strong update”, we mean that a write
to a register or memory location can change the type of the value
stored in the register or memory location. Because of aliasing, such
a type change would be unsafe without some linearity restriction.

The type system describes the state of registers and mem-
ory with a linear environmentΨ mapping locations̀ to integer
valuesn. The program manipulatesΨ via the linearcapability
types“Reg r n” and “Mem n1 n2”, which indicate that registerr
(wherer is a type of kindR) currently holds the integern (where
n is a type of kindN), and memory addressn1 holds the integer
n2 (wheren1 andn2 are types of kindN). A capability of type
Regr n, for example, gives the program the right to read value
n from registerr, and to change the contents of registerr to any
new valuen′, where changingn to n′ consumes the linear capa-
bility Reg r n and produces a new linear capability Regr n′. The
linearity of the environmentΨ guarantees that only one capabil-
ity for registerr exists, so that it is safe to consume Regr n and
produce Regr n′. Ψ’s linearity does not mean that we restrict pro-
grams to linear data structures (trees). Instead, we use nonlinear
function types!(τ1 (τ2) to encode aliasing and weak updates,
as described in Section 6.

Conceptually, a program starts with an initialΨ that describes
the initial state of the registers and memory. As the programruns,
Ψ evolves to track the updates to registers and memory. However,
Ψ is merely a technical device used to establish the soundnessof
the language; our actual implementation of the type system omits
Ψ. In practice, programs have a “main” block whose precondition
specifies a variablex holding an array of register and memory ca-
pabilities, and the program uses variables to pass these capabilities
from block to block. (The loader that loads and starts the program
must ensure that the initial state of the memory and registers satis-
fies main’s precondition.) The soundness of the language relies on

τ ≡ τ
τ1 ≡ τ2

τ2 ≡ τ1

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

(λA :κ.τb) τa ≡ [A← τa]τb

elim 0 τz τs ≡ τz

elim s(τm) τz τs ≡ τs τm (elim τm τz τs)
rec τ ≡ ©(τ (rec τ))

(©τ1) τ2 ≡ ©(τ1 τ2)

Figure 3. Type equivalence rules (excluding congruence)

` x : τ =⇒ {}; {x : τ} ` !x : τ =⇒ {}; { !x : τ}

` p : τ =⇒ ∆; Γ

` !(p) : !τ =⇒ ∆;Γ

` p : τ =⇒ ∆;Γ

` A, p : ∃A :κ.τ =⇒ ∆, A : κ; Γ

` p1 : τ1 =⇒ ∆1; Γ1 ` p2 : τ2 =⇒ ∆2; Γ2

` p1, p2 : τ1 ⊗ τ2 =⇒ ∆1∆2; Γ1Γ2

Figure 4. Proof pattern typing rules

!C, !x : τ ` x : τ !C, x : τ ` x : τ
!C ` e : τ

!C ` !e : !τ

C1 ` e1 : τ1 ` p : τ1 =⇒ ∆;Γ
(C2)(∆; Γ) ` e2 : τ2 C1, C2 ` τ2 : T

C1, C2 ` letp = e1 in e2 : τ2

` p : τa =⇒ ∆; Γ (C)(∆; Γ) ` e : τb C ` τb : T

C ` λp :τa.e : τa (τb

C1 ` ef : τa (τb

C2 ` ea : τa

C1, C2 ` ef ea : τb

C1 ` e1 : τ1

C2 ` e2 : τ2

C1, C2 ` e1, e2 : τ1 ⊗ τ2

C1, !C2 ` τn : N C1, !C2 ` τf : N→ T

C1 ` ez : τf 0 !C2 ` es : !∀A :N.τf A (τf s(A)

C1, !C2 ` elim τn τf ez es : τf τn

C, A : κ ` e : τ

C ` λA :κ.e : ∀A :κ.τ

C ` e : ∀A :κ.τ ′ C ` τ : κ

C ` e τ : [A← τ]τ ′

C ` τ1 : κ C ` e : [A← τ1]τ2

C ` pack[τ1, e] as∃A :κ.τ2 : ∃A :κ.τ2

C ` e : τ τ ≡ τ ′

C ` e : τ ′

C ` e : τ

C ` ©e : ©τ

C1 ` e1 : ©(τa (τb) C2 ` e2 : ©τa

C1, C2 ` e1
©<< e2 : ©τb

∆; !Γ; Υ; {r 7→ n} ` fact : Regr n

∆; !Γ;Υ; {n 7→ n
′} ` fact : Mem n n

′

τ = ∀A1 :κ1. . . . ∀An :κn.Coden τ ′

∆ ` τ1 : κ1 . . . ∆ ` τn : κn

∆; !Γ;Υ, n 7→ τ ; {} ` code(n)[τ1 . . . τn] :
Coden ([An ← τn] . . . [A1 ← τ1]τ

′)

Figure 5. Proof term typing rules

one additional technical device: there must be some value that rep-
resents a capability. GTAL uses the special value “fact” to connect
Ψ to the proper capabilities; likeΨ, the “fact” value appears only
in the theory, not the implementation.

In contrast to the register and memory environmentΨ, the code
environmentΥ is nonlinear, which allows nonlinear code capabil-
ities !(Coden τ). Each code capability asserts that at memory lo-
cationn, there is a block of code with preconditionτ . Code blocks
may be polymorphic over type variablesA1 . . . An, so code val-
ues code(n)[τ1 . . . τn] specify typesτi to instantiate eachAi with.
For example, the following type specifies a code block polymor-
phic over integersN , with a precondition that asks that registerr
containN , the address of a continuation function specified by type
CodeN (Regr N):

∀N :N.Coden (Regr N⊗ !(CodeN (Regr N)))

The Reg, Mem, and Code capabilities refer to integersn, which we
define to be0 or the successor of an integers(n). Given zero and
successor, we can define less-than-or-equal and array operators as
Church encodings, which fold functions over the integersA, A +
1, A + 2, . . . , B − 1:

Le = λA :N.λB :N.∀F :N→ T.
!(∀N :N.F N (F s(N)) (F A (F B

Arr = λA :N.λB :N.λF :N→ T.∀G :N→ T.
!(∀N :N.F N (G N (G s(N)) (G A (G B

For instance,Arr 5 8 (λN : N.∃M : N.Mem N M) is an ar-
ray of free memory in locations5 . . . 7: for any type function
G, it transformsG 5 into G 8 by applying the function(∃M :
N.Mem N M) (G N (G s(N) three times (once forN = 5,
once forN = 6, once forN = 7). Given these definitions, it’s
straightforward to define lemmas aboutLe , such as transitivity, and
lemmas aboutArr , such as lemmas for splitting and combining ad-
jacent arrays.

Figure 3 shows the type equivalence rules. The type system in-
cludes a primitive recursion (fold) operation “elimn τz τs” that is
equivalent toτz if n = 0 and is equivalent to(τs m (elim m τz τs))
if n = s(m). This lets the type system express addition, reasoning
by cases, and predecessor:

Add = λA :N.λB :N.elim B A (λM :N.λAccum :N.s(Accum))
Caseκ = λA :N.λZ :κ.λS :N→ κ.

elim A Z (λM :N.λAccum :N.S M)
Pred = λA :N.CaseN A 0 (λM :N.M)

The term language also contains an induction operation on integers,
also called “elim”. For simplicity, we ignore 32-bit and 64-bit
arithmetic in this paper, and assume that registers and memory
words can hold any natural number, but modifying the assembly
language rules to use mod-2n arithmetic would be straightforward.

3.2 Recursive syntax, recursive types, and modal operators

Supporting recursive specifications in a logic requires caution—
adding unrestricted recursive types to the system can introduce un-
bounded recursion, which corresponds to circular reasoning. For
example, suppose that a recursive typeFR is defined to be a func-
tion type (implication) takingFR and returningFalse, so that the
following type equivalence holds:FR ≡ (!FR) (False. Then
the term(λ !x :!FR.x !x) has type(!FR) (False, and so
the (non-terminating) term(λ !x :!FR.x !x) !(λ !x :!FR.x !x) has
typeFalse, and thus provesFalse .

Nevertheless, ATS and Jiaet al.’s system already include a
particular form of recursion between the proof language (which
must disallow unbounded recursion) and the computation language
(which allows nontermination): in these systems, the syntax for
computation types and logical formulas is mutually recursive. For

example, the logical formulag ⇒ τ in Jia et al.’s system asserts
that memory locationg has typeτ , and the computation type
(F) → 0 specifies a typed assembly language code block with
preconditionF , as shown in this simplified subset of their syntax:

formula F = . . . | g ⇒ τ
type τ = . . . | (F)→ 0

The proof language can safely cooperate with the computation lan-
guage because the proof language handles computation typesτ
opaquely; a proof with access to a formulag1 ⇒ ((F1) → 0)
cannot actually invoke the typed assembly language block oftype
(F1) → 0 (which might have a side effect, or fail to terminate).
Furthermore, even the formulas insideF1 appear opaque to this
proof, since the formulaF1 is buried inside the computation type
(F1)→ 0. In fact, the following computation recursive type equiv-
alence is sound:

τR ≡ ((g2 ⇒ τR)→ 0)

even though it introduces a logical recursive type equivalence,
given the abbreviationFR = (g2 ⇒ τR):

FR ≡ (g2 ⇒ ((FR)→ 0)))

We can generalize this idea in two steps. First, following Nakano
[16, 1], we add an explicit opaqueness operator© to the logi-
cal formula syntax, and allow recursive type equivalences of the
form FR = ©(. . . FR . . .). For example,FR ≡ ©((!FR) (

False) is a legal equivalence. Second, in the spirit of monadic
IO [24], we distinguish between a pure language (the proof lan-
guage) and an impure language (the computation language), and
stipulate that only the impure language can extract formulas from
underneath the© operator — proof terms can coerceF to ©F ,
but only computation terms can coerce©F to F . To see the in-
tuition behind this restriction, consider again the non-terminating
term (λ !x :!FR.x !x) !(λ !x :!FR.x !x). The application “x !x”
is now ill-typed, becausex′s type ©((!FR) (False) is not
a function type, and the proof language cannot coercex to the
function type((!FR) (False). By contrast, the equivalence
τR ≡ (©(g ⇒ τR)) → 0 gives the computation language a way
to express non-termination: a computation functionf of type τR

coerces its precondition©(g ⇒ τR) to the formula(g ⇒ τR),
uses this formula to load a functionf ′ of typeτR from addressg,
and then invokesf ′. If f ′ andf are the same function, this compu-
tation diverges. Thus, it is still possible to encode non-terminating
computationsusing recursive types, but Section 5 proves that all
well-typedproofsterminate.

GTAL’s recursive type “recτ ” uses the© operator to form
recursive definitions, such as this recursive definition of azero-
terminated linked list:

rec (λList :N→ T.λN :N.
!(Le 1 N) ((∃N ′ :N.Mem N N ′ ⊗ List N ′))

Unlike many proof languages (such as TL’s proof language), GTAL
allows recursive type definitions that mention the recursively bound
name in both positive and negative positions, and the© operator
protects the proof terms from non-termination. (Note: the type
equivalence rule recτ ≡ ©(τ (rec τ)) implements a form ofequi-
recursive types, which tend to be more challenging to type check
than iso-recursive types. Our actual implementation of theproof
language requires explicit term annotations to tell the type checker
where to apply the rule recτ ≡ ©(τ (rec τ)).)

It’s often necessary to coerce a formula©A to a some related
formula©B. For example, GTAL encodes classes using recursive
types, and a coercion from a subclass object to a superclass ob-
ject coerces©A to ©B, whereA describes the subclass andB
describes the superclass. The garbage collector’s heap extension
lemma also coerces©A to ©B, whereA describes an object in

coercion c = e |]c

instruction i = c

| [c]movir ← n

| [c1|c2]movr1 ← r2

| [c1|c2]addir1 ← r2 + n

| [c1|c2|c3]addr1 ← r2 + r3

| [c1|c2,mem]loadr1 ← [r2 + n]

| [cmem |c1|c2]store[r1 + n]← r2

| [c1|c2|x.cjmp]bler1 ≤ r2 n

block blk = letp = i in blk

| [cjmp]jmpn

| [c|cjmp]jr r

block w/ header b = λA :κ.b | λp :τ.blk

code heap Λ = {} | Λ, n 7→ b

program prog = letp = c in prog | Λ blk

Figure 6. Computation language syntax

some heapH andB describes an object in an extended heapH ′.
It’s possible to coerce©A to ©B by first using the computation
language to coerce©A to A, and then using the proof language
to coerceA to B to ©B, but this often forces an awkward rendez-
vous between the computation and proof language. The heap exten-
sion lemma, for example, performs one©A- to-©B coercion for
each word in the heap, and it would be impractical to execute one
computation step per heap word every time the heap grows. Luck-
ily, there is a sound axiom, the modal “distribution axiom” (written
here as “©<<”), that lets the proof language perform a coercion
inside a© operator:

©<< : ©(A→ B)→ (©A→ ©B)

This axiom, when combined with the axiomA → ©A, fits into
a general framework of intuitionistic modal logics categorized by
Simpson [21]. (Specifically, these two axioms are valid for Kripke
models(W,≤, R, V) whereR is a subset of≤; see [21] for deriva-
tions of various intuitionistic modal logics based on various choices
of R.) Nakano [16] describes additional axioms that may be appro-
priate for the© operator, though the two axioms above are suffi-
cient for this paper. Note, though, the standard monadicbind ax-
iom, “>>=”, is inappropriate for GTAL, as it is strong enough to
express non-terminating proofs when combined with GTAL’s re-
cursive types:

>>= : ©A→ (A→ ©B)→ ©B

Therefore, even though GTAL’s use of© is analogous to monadic
IO, it is fundamentally different. Nevertheless, Wadler [24] de-
scribes two slightly weaker operators (©A → (A → B) → ©B
and©A → ©B → ©(A × B)) that predate “>>=” and are safe
for GTAL; these weaker operators can derive©<< and are deriv-
able from©<<.

4. A typed assembly language
GTAL’s computation language, shown in Figure 6, consists ofas-
sembly language instructions for moving, adding, loading,storing,
conditional branch, direct jumps, and jumps through registers. Like
LTT [6], TL [20], and ATS [29], the computation language manipu-
lates proof termsc explicitly, assigning proofs to variablesx (occur-
ring in patternsp) using “let” expressions. Each instruction requires

one or more proof terms to provide evidence of the instruction’s
safety; for example, the move instruction “[c1|c2]movr1 ← r2” re-
quires proofsc1 andc2 that registersr1 andr2 are accessible. This
approach results in verbose annotations, but makes type checking
easy. Section 5’s coercion termination theorem allows GTALto
erase the annotations after type-checking the code.

Unlike the proof language, the computation language supports
the coercion©A → A. The operator “]” erases a single© from a
type:

C ` c : ©τ

C `]c : τ

We define a “coercion”c to be a proof terme preceded by zero or
more] operators. Typically, a program uses the] operator to unroll
a recursive type. If the variablex has type recτ , then the compu-
tation term “lety =]x in blk ” introduces an unrolled variabley of
type(τ (rec τ)).

Each blockb in the program specifies a preconditionτ . For
example, the following block’s precondition requires thatregister
r hold a numberA, and that memory locationA hold a numberB
that is the address of another block of code:

λA :N.λB :N.λ(xr , xm, !xc) :
(Regr A)⊗ (Mem A B)⊗ !(∀X :T.CodeB X).

letxr ′ = [xr |xr , xm]loadr ← [r + 0] in
[xr ′|xc ((Regr B)⊗ (Mem A B)), (xr ′, xm)]jr r

The block accepts its precondition in the variablesxr , xm, andxc,
and then executes a load and a jump. Each instruction requires ev-
idence that the instruction is safe, and produces new evidence for
subsequent instructions. For example, the load instruction requires
two coercions as evidence: the coercionc1 proves that the destina-
tion register is available, andc2,mem proves that the source regis-
ter and memory location are available. In this example,r is both
the source and destination register, so the same evidencexr sat-
isfies both requirements. (Note that even thoughxr is linear, it is
safe and useful for the load instruction’s typing rule to share the
contextC ’s linear assumptions among the operands so that both
operands can usexr , rather than splittingC disjointly between the
operands.) The load instruction consumes the evidence for the des-
tination register and produces new evidence saying that theregister
now contains the loaded value from memory:

C = Ca, Cr C = C′, C′′

C′ ` c2,mem : (Regr2 τ2)⊗ (Mem τ2+ n τm)
Cr ` c1 : Regr1 τ1

Ca, x 7→ (Regr1 τm) ` blk

C ` letx = [c1|c2,mem]loadr1 ← [r2 + n] in blk

(For simplicity, we show a special case of the general rule for load,
accepting just variablesx rather than patternsp.) In the example
above,xr ′ is assigned type Regr B. This prepares the block for a
jump to the code at addressB:

C = C′, C′′

C′ ` c : Regr τr

C ` cjmp : (Codeτr τc)⊗ τc

C ` [c|cjmp]jr r

The code evidencexc shown above is polymorphic over all precon-
ditionsX, so the example instantiatesX with a particular precon-
dition τc = (Regr B)⊗(Mem A B), and then provides evidence
(xr ′, xm) of typeτc.

Other instructions are similar. The store instruction consumes a
memory assertion Memτ1 τ2 to produce a new memory assertion
Mem τ1 τ ′

2. The add instructions consume a Regτ1 τ2 to produce
a Regτ1 s(s(. . . s(τ2) . . .)). The conditional branch produces an
assertion!(Le s(τ2) τ2) for the instructions following a compari-
son ofτ1 to τ2, and an assertion!(Le τ1 τ2) for the branch target

(the variablex shown in the syntax holds the latter assertion, so that
the coercionc can usex to satisfy the branch target’s precondition).

A program prog consists of a currently executing blockblk
and a mappingΛ from code addresses to blocks, preceded by
zero or more “let” declarations. The “let” declarations areused to
establish libraries of types and proofs for use by the coercions and
expressions inside the blocks; for example, the garbage collector
in Section 7 establishes a large library of basic types (e.g., True ,
False, Le, Arr) and types for garbage collection invariants. The
complete typing and evaluation rules are available online [8].

5. Formal properties
GTAL is safe in the standard sense of type preservation (subject
reduction) and progress; the preservation and progress theorems
for programsprog encompass preservation and progress for blocks
blk , coercionsc, and expressionse; proofs are by induction over
judgments:

Theorem [type preservation]: If C = ∆;Γ;Υ;Ψ and` C and
C ` prog andΨ; prog −→ Ψ′; prog ′ then` C′ andC′ ` prog ′

whereC′ = ∆;Γ;Υ;Ψ′.
Theorem [progress]: If C = {}; {}; Υ;Ψ and` C andC `

prog then there is someΨ′; prog ′ such thatΨ; prog −→ Ψ′; prog ′.
The termination theorems make it safe to erase the annotations

from a TAL program before running it, so that TAL execution is
just untyped assembly language execution:

Theorem [expression termination]: If C = {}; {}; Υ;Ψ1

and` C andC ` e1 : τ then all sequences of reduction steps
e1 −→ e2 −→ e3 −→ . . . terminate at someen = vn. (Note
that valuesv do not step; particularly, the value©e does not step.)
Proof by preservation and progress, and by mappinge andτ onto
calculus of inductive construction terms/types [20, 11], erasing any
e inside a©e and anyτ inside a©τ . The key observation is that
in a proof term©e, the terme plays no role in the reduction.
More formally, we define an erasure that maps©e to the dummy
valuetrue (of typeTrue) and maps©τ and recτ to dummy types
(e.g.,True , if τ : T), and prove that this erasure has no effect
on the number of reduction steps. We then prove that the erased
term is well-typed, so that proving termination of well-typed terms
in the original language reduces to proving termination of well-
typed terms in a language without the© operator and recτ type.
Note that if the proof language included a coercion©τ → τ , the
corresponding evaluation rule©e −→ e would destroy the proof,
becausee could escape into the rest of the evaluation and affect
the number of subsequent reduction steps. Intuitively, this is why
the monadic operator>>= is unsafe for the© operator: the rule
(©ea) >>= eb −→ eb ea allows ea to escape outside the©
operator and affect the rest of the computation. By contrast, the
rule (©eb)©<< (©ea) −→ ©(eb ea) produces an opaque value,
with no escape.

Theorem [coercion termination]: If C = {}; {}; Υ;Ψ1 and
` C and C ` c1 : τ then all sequences of reduction steps
c1 −→ c2 −→ c3 −→ . . . terminate at somecn = vn. Proof
by induction on the number of] operators inc (using expression
termination in both base and induction cases).

Detailed proofs of these theorems are available online [8].

6. Heaps and heap object types
Sections 3-5 described GTAL’s syntax completely; the rest of the
paper adds no new syntax. As promised in Section 1, GTAL in-
cludes no types or expressions for heaps, heap objects, allocation,
and deallocation. This section describes how to encode these con-
cepts using the existing GTAL syntax.

GTAL’s types are sufficient to implement a heap and nonlinear,
arbitrarily aliased pointers into the heap. For example, suppose that

the heap contains just two wordsA0 andA1 at memory locations
N andN + 1. Define the heapM = M0 ⊗ M1 where, for an
immutable heap,Mk = Mem N + k Ak (using the abbreviations
N + 0 = N , N + 1 = s(N), N + 2 = s(s(N)), etc.), or, for a
mutable heap,Mk = ∃Ak:N. (Mem N+k Ak)⊗ (Fk Ak) where
Fk is an invariant thatAk must satisfy. A nonlinear pointerPk into
the heapM is simply a nonlinear function!(M (Mk ⊗ . . .) that
extractsMk from M . The “. . .” indicates everything else inM that
is not contained inMk; for the typed assembly language presented
below, it’s helpful to describe “everything else” precisely, using the
type (Mk (M) (which intuitively can be thought of as “Mk

subtracted fromM ”):

Pk = !(M (Mk ⊗ (Mk (M))

Given a nonlinear pointerPk and a linear heapM , a simple proof
term provesMk and(Mk (M). The computation language can
then useMk to loadAk from memory locationN + k or storeAk

to memory locationN +k. After loading or storing, a simple proof
usesMk and(Mk (M) to reconstitute the heapM . A program
passes the linear heapM from function to function explicity as the
program executes; this allows every function in the programto use
the pointersPk for loads and stores at any time.

Unfortunately, if the program extends the heap with a third
memory wordM2, this strategy breaks down. The new heap type
M ′ = M0 ⊗M1 ⊗M2 is different from the old heap typeM , and
this means that the old pointersPk no longer apply to the current
heap (since they refer toM , not M ′). One strategy is to restrict
pointers to a particular pattern, as Jiaet al. do for stacks [12]; we
can imitate their approach by observing that!(M ′

(M⊗(M (

M ′)), so that pointers intoM are still usable via a two-step process:
extractM from M ′, then extractMk from M . This is good for
stacks, which have very restricted usage patterns for pointers, but
insufficient for heaps, because pointers toM have different types
than pointers toM ′, and this prevents a program from using these
pointers interchangeably.

Another strategy is to find all old pointers in the program and
update their types to refer toM ′. Updating an old pointer is easy,
but finding the old pointers is hard, since they may be hidden
inside functions, inside recursive data types, their typesmay appear
non-positively in other types, etc. The traditional meta-theoretic
approach to heaps uses an induction over terms to prove a heap
extension lemma [15]; this is a straightforward induction at the
meta-level, but it appears difficult to encode an induction over terms
efficiently from inside the language (i.e., to construct terms that
perform structural induction over all other terms).

In earlier work [10], we overcame this problem by adding a
meta-level extension lemma to the proof language. This caused
some tension with our stated goal of not baking the heap into the
language, though — if there’s no heap built into the language, what
does the extension lemma extend? Our answer to this was rather
eccentric (the extension lemma extended a set of recursive type
bindings), so for this paper we’ve chosen a cleaner approach, closer
in spirit to work by Crary and Weirich [7] and Shaoet al. [20]. Shao
et al. define “source types”Ω as inductive type definitions within
their proof language (CIC):

InductiveΩ : Kind := snat : Nat → Ω
| sbool : Bool → Ω
| �: Ω→ Ω→ Ω
| tup : Nat → (Nat → Ω)→ Ω
| ∀s : Πk : s.(k → Ω)→ Ω
| ∃s : Πk : s.(k → Ω)→ Ω

In this example (taken from [20]), the source types include sin-
gleton natural numbers (such as “snat 7”), singleton booleans,
function types (such as “� (snat 7) (sbool true)”), tuple types

(specified by a length and a mapping from indices to types), and
polymorphic and existential types (both written in a higher-order
abstract syntax style). The program then performs analysisand
transformations on these types from within the language, without
requiring any meta-level proofs about the source types. A partic-
ularly useful transformation is Crary and Weirich’s “interp” func-
tion, which maps the inductively defined sources types to concrete
representations.

Following these approaches, we first define an inductive syntax
for what we’ll call “heap types”, and then define a function that
maps heap types to concrete representations. Given these heap
types, we can define a heap and prove heap extension inside the
language, without requiring a meta-level heap extension lemma.

The ability to analyze inductively defined heap types within
the language comes at a cost: the types of objects appearing in
the heap are limited to whatever types can be expressed using
inductive definitions. There are two reasons to believe thatthis
cost is reasonable. First, therepresentationsof the heap types may
still incorporate any types in the type system (existentialtypes,
capabilities, etc.), not just heap types. Second, theΩ example
above shows that a proof language like CIC is powerful enough
to express common programming language features. Nevertheless,
CIC’s rules for well-formed inductive types and operationson
inductive types are intricate and subtle; for this paper, weprefer to
stick with a simpler type system (and leave the integration of GTAL
with CIC as future work). Luckily, the proof system from Section
3 already defines one inductive type, natural numbers, and this one
type alone is enough to encode classes, methods, and subtyping in
the style of Chen and Tarditi’s LILC [5].

Just as Crary and Weirich define mappings from inductively
defined types to concrete representations, Chen and Tarditidefine
mappings fromclass namesto concrete representations. To encode
this approach, we use natural numbers as class names, and then
define a mapping from natural numbers to representations. Let the
kind of class namesC be an abbreviation for the natural number
kind: C = N. Then the representation functionRep is a recursive
type of the following form, whereτRep (defined in Section 6.1) has
kind T:

Rep = rec (λRep :C→ N→ (N→ C)→ N→ T.
λClassName :C.
λOffset :N.
λSpaceMap :N→ C.
λValue :N.τRep)

Each class representation specifies a word representation for each
word at offsetOffset . For example, consider a class Point, with a
header word and integer data word, and a class Link with a header
word and two data words:

class Point {τPointHdr ; int}
class Link {τLinkHdr ; int; Point}

Point will define word representations for offsets 0 and 1, and
Link will define word representations for offsets 0, 1, and 2.Each
word representation takes a parameterSpaceMap, described be-
low, and a value indicating the contents of memory at offsetOffset
from the beginning of an object. Given these parameters, theword
representation produces an invariant that must be satisfiedby the
contents of memory atOffset . For example, a word of type “int”
may contain any natural number, so the word representation is the
trivial invariant “λSpaceMap :N → C.λValue :N.True”. A type
“pos” that holds non-zero natural numbers would have the word
representation “λSpaceMap :N→ C.λValue :N.Le 1 Value”.

The SpaceMap parameter describes the memory layout at a
given point in the program’s execution. For the moment, suppose

that a singleSpaceMap function defines the current state of the
entire heap. (The next section actually defines twoSpaceMap
functions, one for from-space and one for to-space.) Each object
in the heap consists of a header word followed by zero or more
interior words.SpaceMap maps word addresses to descriptions of
words. Specifically,SpaceMap N = 0 if addressN holds a free
word,SpaceMap N = 1 if addressN holds an interior word, and
SpaceMap N = s(s(C)) if addressN holds the header word of
an object of classC.

Word representations for class-pointer types define constraints
onSpaceMap. The word representation of Link’s last field, of type
Point, is:

λSpaceMap :N→ C.λValue :N.
!(Eq (SpaceMap Value) s(s(CPoint)))
⊗ !(Eq (SpaceMap s(Value)) 1)

whereCPoint is the class name for Point. This representation re-
quires that at addressesValue ands(Value), there lives an object
of class Point. (Actually, we’ve fibbed here slightly; the real defi-
nition of the pointer-to-Point representation allows any subclass of
Point to reside at addressValue, but we defer subclasses to the
companion technical report [9]. Also, for simplicity, we assume
non-null pointers in this paper; the representation of a possibly null
pointer would have the form “λSpaceMap : N → C.λValue :
N. !(Le 1 Value) (τ ”, stating that the invariantτ is only rele-
vant if the addressValue is not 0.)

The heap maintains two properties for each heap addressn.
First, a linear capability “Memn Value” specifies that addressn
currently holds some valueValue. Second, ifn holds a field of an
allocated object, thenValue must satisfy the word representation
of that field (e.g.Value must satisfy “Le 1 Value” for a field
of type “pos”). The mapping fromn to n’s word representation
consists of two steps: first, use(SpaceMap n) to find the class
ClassName and offsetOffset stored atn; second, useRep to
find the word representation(Rep ClassName Offset). Suppose,
for example, thatSpaceMap maps addressn to class Point and
offset 1. Then(Rep CPoint 1) will be the word representation
for “int”: λSpaceMap : N → C.λValue : N.True . A program
can use the capability Memn Value to load valueValue from
addressn, and the word representation to discover thatValue
satisfies the (trivial) constraint “True”. The program can also use
the capability Memn Value to store a new valueValue ′ into
addressn, provided thatValue ′ also satisfies the constraint (in
this case, all values satisfy the constraint “True”). Notice that as
long as a new valueValue ′ satisfies the constraint for the word
representation atn, storing Value ′ into n does not change the
global mapSpaceMap. In other words, the heap can treat “weak
updates” to addressn (updates that do not change the invariant at
n) locally, without considering other memory addresses.

6.1 Generalized representations

The Point and Link classes provide examples of how to define a
particular definition ofRep. This rest of this section generalizes
Rep’s definition to cover all classes defined by the following gram-
mar:

class = τmethods field
1

. . . fieldn

field = nclass | τprimitive

Each class defines a layout consisting of a method table layout,
specified by any typeτmethod of kind N → T, and zero or more
fields. Each field is either a pointer to a class, specified by the
integer name of the pointed-to class, or a primitive type specified by
any typeτprimitive , of kindN→ T. For example,τprimitive could be
λValue :N.Le 1 Value to represent a positive integer field. Since

the τmethod andτprimitive types do not depend onSpaceMap, the
garbage collector will not care how they are defined; it will simply
copy the valueValue from one memory location to another.

Just as we used natural numbers to encode class names, we use
natural numbers to encode class layouts. The encoding consists of
three functions, whereτsize has kindN andτPtrClassName andτPrim

have kindT:

SizeOf = λClassName :C.τsize

Ptrs = λClassName :C.
λOffset :N.τPtrClassName

Prims = λClassName :C.
λOffset :N.
λValue :N.τPrim

For eachClassName, the typePtrs maps each field of the class to
either0, to indicate a primitive type, or tos(ClassName ′), to in-
dicate a pointer type to classClassName ′. For eachClassName ,
the typePrims maps each field of the class to either an invariant
τPrim for a primitive type field, or to the typeFalse for a pointer
type field.

SizeOf specifies the size, in words, of each class’s layout.
Given this size information, we can define a pointer to an object of
classClassName (generalizing the earlier definition of “pointer-
to-Point”):

ExactPtr =
λClassName :C.
λSpaceMap :N→ N.
λValue :N.
!(Eq (SpaceMap Value) s(s(ClassName)))
⊗ !(Arr 1 (SizeOf ClassName) (λN :N.

!(Eq (SpaceMap (Add Value N)) 1)))

The typeExactPtr specifies that an object of classClassName re-
sides at addressesValue . . . Value+(SizeOf ClassName)−1 —
specifically, it specifies thatSpaceMap Value = ClassName +2,
and thatSpaceMap (Value + 1) = 1...SpaceMap (Value +
(SizeOf ClassName)−1) = 1. (The prefix “Exact” indicates that
the pointer points to an object whose class is exactlyClassName ,
and not a subclass ofClassName; we defer subclass pointers to
the companion technical report [9].)

A single definition ofRep, written in terms ofSizeOf , Ptrs ,
andPrims, now suffices for all sets of class layouts:

Rep = rec (λRep :C→ N→ (N→ C)→ N→ T.
λClassName :C.
λOffset :N.
λSpaceMap :N→ C.
λValue :N.
Case Offset (Prims ClassName 0 Value ⊗

GcHeader ClassName Value) (λM :N.
Case (Ptrs ClassName Offset)

(Prims ClassName Offset Value)
(λClassName ′ :C.

ExactPtr ClassName ′ SpaceMap Value))))

The definition ofRep is by cases, using the definition ofCase
from Section 3 (Case 0 τz τs ≡ τz and Case s(M) τz τs ≡
τs M). The most important case is inner case, which defines prim-
itive type fields in terms ofPrims and defines pointer type fields
to be anExactPtr to the pointed-to classClassName ′. The outer
case differentiates the header word from the fields; the header word
is defined in terms ofPrims and then augmented with some extra
information for the garbage collector, as defined in the nextsection.

������ �
��	
 ��� � �� ����� � �� ��

load header (fromspace)� �� ��
������ �� ��
�� ��! ��
already forwarded?��	
 ��� " �� ���� � � �� ��
load (SizeOf C)	

 ��� " �� ��# � ��� " ��
allocate (SizeOf C) words� �� ���� "������ ��
 ��! ��
enough space?$� �	%� ��
not enough space���&'(')* �

$� ����+ ��
return forwarding pointer���(')* �

,���� ���# � �� �� ��� � ��
copy word 0 �- ���.������ ��
initialize fromspace ptr �- ��������# ��
save tospace address$� ��
 ��!/���

���(')* 0'') �
	

% ���. �� ���. � " ��

increment fromspace ptr	

% ��# �� ��# � " ��
increment tospace ptr� �� ���� " �� ��# � ��
1�2� ��
reached end of object?��	
 ���3 �� ����. � �� �� 4

,���� ���# � �� �� ���3 �� �
copy one word$� ��
 ��!/���

���5'67 �
,���� ����� � �� �� ��� � ��

set forwarding pointer$� ����+ ��
return copied object

89:�;�� �
 �- �<# �� ��# �� 4
 �- ��$ �� �<% �� 4
 �- ��# �� �<% �� 4
 �- �<% �� ��% ��

swap fromspace, �- ��% �� ��$ ��
tospace �- ��� " �� �<� �� �

 �- �<� �� ��� �� �
 �- ��� �� ��� " �� �
$� ����=

890'') �
��� ���#����$� >+1�2� ��

queue empty?��	
 ��� " �� ���$ � �� ��
load header (tospace)��	
 ��� " �� ���� " � "� ��
load scan function$� ��� " ��
jump to scan function895'67 �

$� ����= ��
finished scanning

Figure 7. Unannotated garbage collector code

:9;6�' ?6� �
	

% ��$ �� ��$ � � ��

TJ←next object in queue$� >+/��� ��
finished scanning object

:9;60?6@ �
��	
 ���� �� ���$ � �� ��

load ptr to Point object �-% ����+ �� A+	2/ %2# � ��
set return address$� ��
B�� ��
forward the Point ptr:9;60?6@C �

,���� ���$ � �� �� ��� � ��
store forwarded pointer	

% ��$ �� ��$ � 3 ��
TJ←next object in queue$� >+/��� ��
finished scanning object

Figure 8. Unannotated scan code for Point and Link classes

The definition above expandsRep into one big recursive
datatype. Our actual implementation parameterizesRep’s defin-
ition over all possiblePtrs , Prims, andSizeOf :

Rep = λPtrs :λPrims :λSizeOf :rec (. . .)

This allows the lemmas aboutRep, such as the heap extension
lemma described in the next section, to be polymorphic over all
Ptrs , Prims, andSizeOf , so that they need not be reproved for
each choice of class layouts. Similarly, the implementation para-
meterizesExactPtr over all possibleSizeOf . Finally, the imple-
mentation breaksRep into smaller, mutually recursive pieces (en-
coding mutual recursion by parameterizing the pieces overRep).
For simplicity, this paper omits these parameterizations,and treats
Rep as a monolithic recursive datatype.

7. A garbage collector
This section describes a simple garbage collector written in GTAL.
Figures 7 and 8 show the unannotated code for the collector. For
clarity, the figure uses textual labels for blocks (e.g., “GcLoop”)
in place of integer code addresses. We have mechanically type-
checked the annotated version of the garbage collector using a type
checker written in OCaml; after introducing the garbage collection
algorithm, this section describes the main invariants thatwe used
to annotate the collector so that it could be type checked. Unfortu-
nately, the proof annotations are much larger than the code itself:
about 1000 lines of proofs to establish lemmas for arithmetic, ar-
rays, and equality, 1500 lines of lemmas for the object and heap
invariants (e.g. the heap extension lemma), and 500 lines ofanno-
tations on the garbage collector instructions. A garbage collector is
atypical TAL code, though, because it manipulates unusually com-
plex invariants. Simpler TAL code requires much less annotation;
for example, the mov instructions in the GcStart block of Figure 7
require only one line of annotation per instruction.

The garbage collector implements the well-known Cheney-
queue algorithm [26], which copies live data from “from-space”
to “to-space”, using to-space as a work-queue to save space.To-
space and from-space will each be contiguous ranges of memory,
the former occupying addressesTI . . .TL− 1 and the latter occu-
pying addressesFI . . .FL − 1. The program allocates objects in
to-space, starting atTI and continuing until the allocation reaches
the limit of to-space (TL), at which point the program starts a
collection.

The garbage collection algorithm proceeds as follows:

1. Assume that to-space contains objects in addressesTI . . .TK−
1 (if TK < TL, thenTK . . . TL − 1 contains free memory).
The algorithm will garbage collect these objects. Assume that
registerRti holdsTI and registerRtk holdsTK . Assume that
from-space contains free space in addressesFI . . .FL − 1.
Assume that registerRfi holdsFI and registerRfl holdsFL.

2. First, the algorithm swaps to-space and from-space: the old to-
space, holding the objects, is now called from-space, and the
old from-space is now called to-space. The program calls Gc-
Start, which swaps the registers that describe from-space and to-
space. GcStart also sets thescan pointerTJ and theallocation
pointerTK to the beginning of the new to-space, and then re-
turns to the program by jumping to a return address (“jr Rretg”).
Each time the collector copies an object into to-space, it adds
the size of the object toTK . In the remaining steps, “from-
space” refers to the new from-space, and “to-space” refers to
the new to-space.

3. For each register holding a pointer (each “root”), the program
calls FwdPtr to copy the pointed-to object to to-space. FwdPtr
overwrites the old from-space object’s header with aforwarding

pointer that points to the new copy; any subsequent calls to
FwdPtr for this object return a pointer to the existing copy
rather than making additional copies. The newly copied object
in to-space is a word-for-word replica of the original from-space
object, which means that the pointers inside the copied object
still point back to from-space.

4. The program calls GcLoop, which scans each object in the Ch-
eney queue (i.e., it scans the objects at addressesTJ . . .TK −
1). GcLoop repeats the following operation until the queue is
empty (i.e., untilTJ = TK):

(a) For the object at addressTJ , call FwdPtr on each pointer
in the object. Overwrite the old (from-space) pointer values
in the object with the forwarded pointers so that the object
points to to-space.

The following diagram illustrates the heap’s state in steps3 and 4:
From-space To-space

FI

FK

FL

allocated
data

free

scanned
copied
data

unscanned
copied

data (queue)

free

TI

TJ

TK

TL
For simplicity, we assume that all root pointers are in registers.

To support a stack, the collector would have to traverse the roots
on the stack as well as roots in the registers; we expect stacktra-
versal to be no harder than heap object traversal (with the possible
exception of scanning saved callee-save registers). Stackscanning
is outside the scope of this paper.

The type system imposes one inefficiency on the collector code:
each allocation in to-space must check that there is enough free
space for the new object. In theory, this check is unnecessary be-
cause to-space is the same size as from-space, and it therefore con-
tains enough room for one copy of each from-space object. Proving
this statically would require extending the invariants considerably,
and we wanted to keep the invariants as simple as possible.

The garbage collector’s two central operations, copying anob-
ject and scanning an object, depend on an object’s layout, and the
garbage collector code shown in Figure 7 must be polymorphic
over all classes. Therefore, the garbage collector needs some run-
time information about each object’s layout. In general, this infor-
mation may come in two forms. First, the information may consist
of meta-data in memory, such as an integer specifying the size of
an object, and a bit field specifying which fields of the objects are
pointers. Second, the information may implicitly reside inper-class
code that actually implements the copy and scan operations.To
demonstrate that GTAL handles both these approaches, we choose
the former approach for the copy operation and the latter forthe
scan operation.

The garbage collector reads information about each object from
the object’s method table, pointed to by the header word. The
method tables reside in a static data area at addressesDI . . . DL−
1, whereDI and DL are constants. Each classC has its own
method table, and each method table contains a size word, a scan
function pointer, and zero or more method pointers:

SizeOf C
scan function

method 0
method 1

...

The Rep function from Section 6 usesGcHeader to add the
size word and scan function pointer to each method table:

GcHeader = λClassName :C.λValue :N.
!(StaticPtr Value (SInt (SizeOf ClassName)))
⊗ !(StaticPtr s(Value) (ScanCode C))

SInt = λN :N.λValue :N.Eq Value N
StaticPtr = λN :N.λInv :N→ T.

!(Le s(N) DL)
⊗ !(D (MemF N Inv ⊗ (MemF N Inv (D))

MemF = λN :N.λInv :N→ T.∃V :N.Mem N V⊗ !(Inv V)
RegF = λR :R.λInv :N→ T.∃V :N.RegR V⊗ !(Inv V)
D = rec (λD :T.Mem DI MDI ⊗ . . .⊗Mem DL− 1 MDL−1)

The type isD a recursive, linear type that specifies the layout of the
static data area (we omit the detailed definition ofD here). Each
StaticPtr implements a nonlinear pointer intoD, following the
strategy in Section 6. We require that the static data area reside in a
lower area of memory than from-space and to-space (i.e.,DL ≤ FI
andDL ≤ TI). This enables the second instruction of FwdPtr to
distinguish between a header word that points to a method table in
D, and a header word that is a forwarding pointer to an object in
to-space. The following definition captures the overall state of the
heap, including from-space and to-space,D, and registers holding
various heap addresses:

Gc = λSf ,St ,FI ,FK ,FL, TI ,TJ ,TK ,TL.
RegRdi DI ⊗ RegRdl DL
⊗RegRfi FI ⊗ RegRfk FK ⊗ RegRfl FL
⊗RegRti TI ⊗ RegRtj TJ ⊗ RegRtk TK ⊗ RegRtl TL
⊗ !(Le DL FI)⊗ !(Le DL TI)
⊗D
⊗FromSpace Sf St FI FK FL
⊗ToSpace Sf St TI TJ TK TL

For brevity, we omit the “N → T” kind annotations on the from-
and to-space mapsSf andSt , and the “N” kind annotations on the
heap addresses. The following type expresses the state of to-space:

ToSpace = λSf ,St ,TI ,TJ ,TK ,TL.
!(Le TI TJ)⊗ !(Le TJ TK)⊗ !(Le TK TL)
⊗ !(∀N :N.Iff !(Le 1 (St N))

!(!(Le TI N)⊗ !(Le s(N) TK)))
⊗ !(Not !(Eq (St TI) 1))
⊗Arr TI TJ (λN :N.MemF N (RepS St St N))
⊗Arr TJ TK (λN :N.MemF N (RepS St Sf N))
⊗Arr TK TL (λN :N.∃V :N.Mem N V)

TheToSpace type enforces these invariants:

• The to-space addresses are in order:TI ≤ TJ ≤ TK ≤ TL

• An addressN holds allocated data (St N > 0) if and only if
TI ≤ N < TK . Otherwise,N holds a free word (St N = 0).

• The first word of to-space may be free (St TI = 0) or contain
the first word of a class object (St TI = s(s(C))), but it never
contains an interior word of an object (St TI 6= 1).

• Each addressTI ≤ N < TJ holds data that points from to-
space to to-space. This data conforms to the invariants specified
in Rep and the to-space mapSt .

• Each addressTJ ≤ N < TK holds data that points from
to-space to from-space. This data conforms to the invariants
specified inRep and the to-space mapSt .

• Each addressTK ≤ N < TL holds free memory.

The functionRepS St S N specifies the invariant that each word
of to-space must satisfy:

RepS = λS, S
′
, N.Rep (SType S N) (SOffset S N) S

′

RepS relies on auxiliary primitive recursive functionsSType and
SOffset , defined so that(SType S N) = C if addressN holds
some word of some object of classC, and(SOffset S N) equals
the offset from the start of the word (where the header word is
at offset 0). If addressN is free, then(SType S N) = 0 and
(SOffset S N) = 0.

The from-space definition is similar, except that each header
word may contain a forwarding pointerExactPtr C St V , rather
than conforming to the invariants inRep:

FromSpace = λSf ,St ,FI ,FK ,FL.
!(Le FI FK)⊗ !(Le FK FL)
⊗ !(∀N :N.Iff !(Le 1 (St N))

!(!(Le FI N)⊗ !(Le s(N) FK)))
⊗ !(Not !(Eq (Sf FI) 1))
⊗Arr FI FK (λN :N.Union

(MemF N (RepS Sf Sf N))
(MemF N (RepFwdS Sf St N)))

⊗Arr FK FL (λN :N.∃V :N.Mem N V)
RepFwdS = λSf ,St , N.

RepFwd (SType Sf N) (SOffset Sf N) Sf St
RepFwd = λC :C.λOffset :N.λSf , St .λV :N.

Case Offset
(ExactPtr C St V)
(λM :N.Rep C Offset Sf V)

Using these definitions, the annotated garbage collector code de-
fines preconditions for each block. The preconditions are long, so
this section just highlights one of them: the precondition for the
scan functions, parameterized over all possibleClassNames :

ScanCode = λClassName :C.λValue :N.
∀Sf ,St ,St ′,FI ,FK ,FL,TI , TJ ,TK ,TL.CodeValue (

Gc Sf St FI FK FL TI TJ TK TL
⊗ !(ExactPtr ClassName St ′ TJ)
⊗ !(ScanQueue St

(Add TJ (SizeOf ClassName)) TK)
⊗ !(SpaceExtend St St ′)
⊗RegJunk (Rptr , Rtmp1 ,Rtmp2 ,Rtmp3 ,Rtmp4 ,

Rretc)
⊗RetG Sf St)

RegJunk = λR :R.∃V :N.RegR V
RegJunk(R1 . . . Rn) = RegJunk R1 ⊗ . . .⊗ RegJunk Rn

Each scan function expects an exact pointer to classClassName
(for example, Figure 8’s ScanLink expects a pointer to Link). This
allows the scan function to load and store fields of the class.When
the scan function finishes, it jumps back to GcLoop. The scan func-
tion only scans the first object currently in the queue; an invariant
“ScanQueue” (omitted here) provides an exact pointer for each
remaining object in the queue.

As the collector allocates new objects in to-space, it extends the
to-space space map. By the time the collector finishes, the final
space mapSt ′ differs from the initialSt . Any pointers that still
refer toSt would be useless unless they could be updated to refer
to St ′. This is the “heap extension lemma” described in Section 6,
and the garbage collector invariants maintain a relation between the
originalSt and the currentSt ′:

SpaceExtend = λS :N→ C.λS′ :N→ C.
∀N :N. !(Le 1 (S N)) (!(Eq (S N) (S N ′))

This relation ensures thatSt ′ extendsSt by changing free (St N =
0) entries of the map to allocated (non-zero) entries, butSt ′ does
not alter any entries inSt that were already allocated. From this, the
annotated garbage collector proves that data representation valid
underSt remains valid underSt ′:

∀S, S′, C,Offset , V. !(SpaceExtend S S′) (

!(Rep C Offset S V) (!(Rep C Offset S′ V)

The proof uses the©<< operator to step inside the recursive type
Rep = rec (. . . τRep), and coerceτRep ’s data fromS to S′. Based
on the extension lemma forRep, the annotated garbage collector
proves extension lemmas for from-space and to-space.

When GcLoop finishes, it jumps to a return address specified
by RetG (omitted here). At this pointTJ = TK , so all allocated
data in to-space points to to-space, not to from-space, and the data
in from-space is recycled into free space. (This collector is a stop-
the-world collector; if the collector were incremental, the program
would need a run-time check, orbarrier [26] to distinguish between
the to-space-to-to-space pointers inTI ≤ N < TJ and the to-
space-to-from-space pointers inTJ ≤ N < TK .)

8. Conclusions
We’ve presented a type system that gives programmers powerful,
primitive abstractions with which to implement type-safe memory
management. GTAL differs from traditional TAL systems by en-
coding objects and classes, rather than including them directly in
the type system. This requires some initial effort to build up the
appropriate abstractions (as the long series of definitionsin Sec-
tions 6 and 7 illustrate), but offers complete flexibility over mem-
ory layout and memory management. Yet, it stops short of requir-
ing a complete mechanical formalization of a typed assemblylan-
guage’s soundness, as in foundational PCC approaches. Further-
more, there’s no need for a separate mechanical proof that the
garbage collector and GTAL interact safely — the garbage collec-
tor is GTAL code, and is verified safe by the GTAL type checker.

In contrast to program-logic-based assembly languages like
XCAP [18], GTAL does not require extra effort to support em-
bedded code pointers, such as the pointers to the scan functions
in the method tables; “Code” types are first-class types. To deal
with genuinely “circular specifications” [18], such as the circular
contract between the heap type (which specifies that header words
point to scan functions) and scan functions (which take the heap as
an argument), GTAL supports recursive types, and provides light-
weight operators “©” and “© <<” to manipulate recursive types
within GTAL’s logic.

Compared to provably correct GC [2], our collector’s invari-
ants are weaker in one dimension (proving safety, not correctness),
but stronger in another dimension (type-checking the program and
garbage collector together ensures their safe interaction). For pro-
tection in a language-based operating system, safety is thefirst
concern. Nevertheless, it would be nice to get the best of both ap-
proaches; since GTAL contains a powerful logic, it may be possi-
ble to extend the garbage collector’s invariants to capturethe cor-
rectness criteria (graph isomorphism) and thereby simultaneously
prove partial correctness and type-safe program interaction.

For simplicity, GTAL’s logic contains only a single inductive
type, natural numbers. We plan to explore general inductivetypes,
as used in [20], to make our encodings more elegant and to enable
more advanced heap types, such as parameterized classes andex-
istentially quantified closures; this would enable interaction with
polymorphic functional languages like ML and System F, in addi-
tion to the class-based languages currently supported.

References
[1] Andrew W. Appel, Paul-Andre Mellies, Christopher D. Richards, and

Jerome Vouillon. A very modal model of a modern, major, general
type system. InProceedings of the 34th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL), 2007.

[2] L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning
about a copying garbage collector. InSymposium on Principles
of programming languages, 2004.

[3] Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula.A
framework for certified program analysis and its applications to
mobile-code safety. InConference on Verification, Model Checking,
and Abstract Interpretation, 2006.

[4] J. Chen, D. Wu, A. Appel, and H. Fang. A provably sound TAL for
back-end optimization, 2003.

[5] Juan Chen and David Tarditi. A simple typed intermediatelanguage
for object-oriented languages. InPOPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 38–49, New York, NY, USA, 2005. ACM Press.

[6] Karl Crary and Joseph C. Vanderwaart. An expressive, scalable
type theory for certified code. InProceedings of the seventh ACM
SIGPLAN international conference on Functional programming,
pages 191–205. ACM Press, 2002.

[7] Karl Crary and Stephanie Weirich. Flexible type analysis. In
International Conference on Functional Programming, pages 233–
248, 1999.

[8] Chris Hawblitzel. http://research.microsoft.com/�chrishaw/.

[9] Chris Hawblitzel, Heng Huang, Lea Wittie, and Juan Chen.A
garbage-collecting typed assembly language (extended version).
Technical Report MSR-TR-2006-169, Microsoft Research, Novem-
ber 2006.

[10] Chris Hawblitzel, Edward Wei, Heng Huang, Eric Krupski, and Lea
Wittie. Low-level linear memory management. InWorkshop on
Semantics, Program Analysis, and Computing Environments For
Memory Management, 2004.

[11] G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq proof assistant
- a tutorial, July 1999.

[12] Limin Jia, Frances Spalding, David Walker, and Neal Glew.
Certifying compilation for a language with stack allocation. In
Logic in Computer Science, 2005, 2005.

[13] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging.
In Proceedings of the ACM SIGPLAN’01 conference on Programming
language design and implementation, pages 81–91. ACM Press, 2001.

[14] Stefan Monnier and Zhong Shao. Typed regions. Technical Report
YALEU/DCS/TR-1242, Department of Computer Science, Yale
University, 2002.

[15] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
system F to typed assembly language. InACM Transactions on
Programming Languages and Systems (TOPLAS), volume 21, pages
527–568. ACM Press, 1999.

[16] Hiroshi Nakano. A modality for recursion. InProceedings of the
IEEE Symposium on Logic in Computer Science (LICS), 2000.

[17] George C. Necula and Peter Lee. Safe kernel extensions without
run-time checking. In2nd Symposium on Operating Systems Design
and Implementation (OSDI ’96), October 28–31, 1996. Seattle, WA,
pages 229–243, 1996.

[18] Zhaozhong Ni and Zhong Shao. Certified assembly programming
with embedded code pointers. InPOPL ’06: Conference record
of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 320–333, New York, NY, USA, 2006.
ACM Press.

[19] Benjamin C. Pierce.Types and Programming Languages. The MIT
Press, 2002.

[20] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for
certified binaries. InACM Symposium on Principles of Programming
Languages, 2002.

[21] Alex K. Simpson. The proof theory and semantics of intuitionistic
modal logic, phd thesis, department of philosophy, university of
edinburgh, 1994.

[22] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
In European Symposium on Programming, 2000.

[23] P. L. Wadler. A taste of linear logic. InProceedings of the 18th
International Symposium on Mathematical Foundations of Computer
Science, Gdánsk, New York, NY, 1993. Springer-Verlag.

[24] Philip Wadler. How to declare an imperative.ACM Computing
Surveys, 29(3):240–263, 1997.

[25] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage
collectors. InProceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 166–178.
ACM Press, 2001.

[26] Paul R. Wilson. Uniprocessor garbage collection techniques. InProc.
Int. Workshop on Memory Management, number 637, Saint-Malo
(France), 1992. Springer-Verlag.

[27] Hongwei Xi and Frank Pfenning. Eliminating array boundchecking
through dependent types. InProceedings of the ACM SIGPLAN ’98
conference on Programming language design and implementation,
pages 249–257. ACM Press, 1998.

[28] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified
libraries for PCC: Dynamic storage allocation. InProc. 2003
European Symposium on Programming (ESOP’03), April 2003.

[29] Dengping Zhu and Hongwei Xi. Safe programming with pointers
through stateful views. InPractical Aspects of Declarative
Languages, 2005.

