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1 Presentation of the Team and Project

The members of this team are Elaina Miller, Alex Ororbia, and Bonnie Reiff. Our project will be based on
the paper, Follow Automata, by Lucian Ilie and Sheng Yu.

1.1 Programming Language Chosen

The team has chosen to use Python for the implementation of the result of the paper. No team member has
extensive experience in this language, but we are all willing to make an effort to learn.

2 First Reading of the Paper

2.1 What the Team Understood

There are a number of things that the team understood well after an initial reading of the paper:

• All algorithms

• Most introductory definitions including quotient set

• Concept of reduced regular expressions

• Diagrams

• ε-elimination and ε-transitions

• Position automaton

• Partial derivative automaton

• remove( ) and avoid( )

2.2 What the Team Did Not Understand

After going through what we could of the paper, there are still some aspects we need to clarify:

• Definition of right invariant

• Definition of quotient automaton

• Complexity analysis

We also struggled with the logic of the proofs of many of the theorems and lemmas. Our hope is that
with more understanding of the topics noted above and with a second read of the paper, the reasoning will
become clearer.

2.3 What the Team Liked about the Paper

The flow of the paper makes it fairly easy to follow. For example, the authors made sure to define important
terms and complete the proofs necessary to understand information in subsequent sections. They also made
the purpose of their paper very clear. The examples that they provide serve two beneficial purposes: Many
of the examples are clear and provide for a better and easier understanding of the material. The examples
that are not clear point out to us what we need to examine further in the future. The inclusion of the graphs
and pseuocode to better illustrate the presented algorithms were also extremely helpful.
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3 Detailed Analysis of the Paper

3.1 General Summary of the Article

In this article, the authors present two new algorithms that contribute to the results. The first algorithm
constructs εNFAs which are smaller than all other εNFAs constructed by similar algorithms. The paper
then demonstrates that the size is extremely close to the provable optimum. The second algorithm builds off
of the first by creating NFAs using ε-elimination on the εNFAs produced by the first algorithm, ultimately
producing a follow automaton. This follow automaton is the simplest of all of the possible automata produced
by similar algorithms and is faster to construct than the others.

In addition presenting the algorithm for reduced regular expressions and their two new algorithms, the
authors also included proofs of theorems, propositions, and lemmas fundamental to the paper content.
Throughout the paper, there were also many examples and diagrams to help the readers understand difficult
concepts.

3.2 Summary of the Content by Section

3.2.1 Introduction

The introduction of this paper expands on the information given in the abstract and explains the structure
of the paper. Some terminology is introduced, but these terms are not defined until the second section. It
gives the reader an idea of what is to come and what terms are essential to understanding the paper. It also
mentions that their εNFA construct will specifically by compared against those of Thompson and Sippu and
Soisalon-Soininen.

3.2.2 Regular expressions and automata

This section defines and gives the notations for two terms that are essential to the understanding of the rest
of the paper: regular expressions and automata. For regular expressions, the size and the set of operations
that are allowed to be performed on regular expressions are given. For the automata, each element in the
quintuple is defined and explained.

This section also defines an equivalence relation and what it means for the relation to be right invariant.

3.2.3 Reduced regular expressions

In this section, the authors define an algorithm to form reduced regular expressions via ∅-reduction, ε-
reduction, and ‘∗’-reduction. The goal of a reduced regular expression is to decrease the total size of the
expression without changing the language generated by it. After the algorithm, the authors also present
propositions regarding the size of a reduced regular expression, α, with respect to the number of occurrences
in α of letters a ∈ A− {∅, ε}.

3.2.4 Small εNFAs from regular expressions

Here, the authors introduce their algorithm for generation of εNFAs from regular expressions, called the follow
εNFA and denoted Aε

f . The construction of the εNFA is presented via Figure 1, with further improvements
at each step listed as well. An example is shown in Figure 2 using a regular expression generated by the
authors of the paper. The regular expression is used in all of the subsequent examples so that the reader can
see how the same regular expression can appear differently based on the rules used to generate an automaton
and can see how the algorithm handles a regular expression from start to finish. It is shown that the language
generated by the follow εNFA on regular expression α is equivalent to the language generated by α itself.
We note that the majority of the proofs concerning this algorithm only address the core construction (i.e.
they ignore the further improvements for simplification). The authors then present a comparison of this new
construction to Thompson’s and Sippu and Soisalon-Soininen’s algorithms and prove that this construction
is the smallest.

The second half of this section concerns a proof of the upper bound on the size of the εNFA. For this,
the authors define the terms ∗-avoidable and ∗-unavoidable, which allow for the construction of avoid(α) and
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remove(β) (where α and β are regular expressions), two functions created with the goal of removing stars
from the expression such that the language of α remains the same, but the size of the expression decreases.
The end result is that they are able to show that for any reduced regular expression α, |Aε

f (α)| 6 3
2 |α|+

5
2 .

Figure 1: The general construction of Aε
f .

Figure 2: Aε
f (α) for α = (a+ b)(a∗ + ba∗ + b∗)∗.

3.2.5 Positions and partial derivatives

This section reviews two well-known constructions of NFAs from regular expressions: the position automaton
and the partial derivative automaton.

For the position automaton, pos(α), first(α), last(α), follow(α, i), α, and A are defined. Two other
important definitions given are that of the position automaton itself – Apos(α), and the transition function
– δpos = {(i, a, j) | j ∈ follow(α, i), a = aj}. These definitions are then used throughout the remainder of
the paper and are crucial to the understanding of it. Note that to relate this paper to what we have learned
in class, the position automaton is derived from Thompson’s algorithm combined with ε-elimination. See
Figure 3 for an example.

We are also given a definition of the partial derivative automaton, as well as its transition function
and inductive definitions of the partial derivatives of the empty string, a single character, and the union,
concatenation, and Kleene star of regular expressions. An example of this type of automaton is presented
in Figure 4.

3.2.6 Apd revisited

This section is dedicated to giving a simpler version of a proof by Champarnaud and Ziadi showing that
the partial derivative automaton Apd is a quotient of Apos – this implies that |Apd| ≤ |Apos|. It also
gives the Brzozowski definition of derivatives, which is a slightly different definition than that given in the
previous section. The authors explain that one way in which they simplify the proof is by applying the
rules for ε and ∅ wherever possible to remove the existence of similar regular expressions. A definition of
a continuation automaton is then given in order to prove that the partial derivative automaton is indeed a
quotient of the position automaton. This continuation automaton is important to understand as it is used
in the propositions and examples in this section to assist in the proof.

3



Figure 3: An example to help understand position automata: Apos(α) for α = (a+ b)(a∗ + ba∗ + b∗)∗ along
with the corresponding values of the mappings first, last, and follow.

Figure 4: An example to help understand partial derivative automata: Apd(α) for α = (a+b)(a∗ +ba∗ +b∗)∗

along with the corresponding partial derivatives of all states in the automaton.

3.2.7 Follow automata

The second algorithm describing the construction of NFAs from regular expressions is presented in this
section. Before the algorithm is given, the follow automaton is defined as the quintuple, Af(α) = (Qf , A, δf ,
0f , Ff ). Then, the algorithm for the removal of the ε-transitions to convert from Aε

f (α) to Af(α) is given as
pseudocode. Figure 5 shows the follow automaton for the example regular expression that the paper follows
through the entire algorithm.

Figure 5: Af(α) for α = (a+ b)(a∗ + ba∗ + b∗)∗.
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After providing the algorithm, some important notes concerning the complexity provided. The authors
show that the complexity of their algorithm is O(|α|2), which is faster than the previous best worst-case
given in a paper by Hopcroft and Ullman.

3.2.8 Af is a quotient of Apos

Now that the follow automaton has been defined and derived, a proof is given that it is the quotient of Apos,
meaning |Af | ≤ |Apos|. The authors point out that this was unexpected but very important. They then
give the definition of a follow equivalence to be used throughout the section: i ≡f j iff i, j, or none belong
to last(α) and follow(α, i) = follow(α, j). This equivalence is similar in structure to the ≡k we learned
in class for Hopcraft’s minimization. The rest of this section is a series of proofs and lemmas that build
upon eachother and eventually prove that the follow automaton is a quotient of the position automaton.
Therefore, based on previous information, both the follow and partial derivative automata are quotients of
the position automaton, but they are not comparable, which is seen in a later section.

3.2.9 Af uses optimally the positions

The point of this section is to prove that the authors’ construction of the follow automaton is optimal. They
do so by showing that the minimal automaton, min(Af(α)), is equal to the follow automaton and pointing
out that computing the follow automaton via the presented ε-elimination algorithm is faster than using
Hopcroft’s algorithm.

3.2.10 Comparing Af with other constructions

Rather than providing any proofs, this section serves to show comparisons between the complexities of the
different automata discussed throughout the paper. Using the four examples provided, it is shown that Af

can be smaller than Apos and Apd, and that Af is incomparable with either Apd or Acfs.

3.2.11 Conclusions and further research

This section provides a nice summary of the main points of the paper:

• Two new algorithms were provided to construct NFAs.

• The constructed εNFAs are smaller than any other construction known (at the time of the publishing
of this paper).

• The follow automata are the simplest out of all of the mentioned automata, are always a quotient of
the position automaton, are easy to compute, and are at least as small as all the other automata.

• The time required to build the follow automata seems to be linear in terms of its size, although this is
not always true.

• A more rigorous comparison between the automata should be done but is probably very complicated
and most easily done using real applications.

3.3 Analysis of the Scientific Contribution of the Article

There have been many papers written on the topic of automata, with each providing algorithms to construct
different types with the smallest time complexity possible, and also with the smallest size possible. This
particular paper provides a definition for εNFAs that are smaller than all other known constructions and
proves that its size is very close to optimal, thus setting the bar for further research in the same area. By
using this almost optimal εNFA construction, the authors were able to obtain a follow automaton in the
simplest way known to date. They also claim that it has a linear size most of the time, which would make
it the smallest of the compared automata, but this was not proven. However, this provides opportunities for
further research on this follow automaton to gain a better perspective of where exactly it fits in with the
others and better gauge how optimal and small it truly is.
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3.4 Main Result of the Article to be Implemented

Our team will implement the construction of follow automata from reduced regular expressions. We will do
so by creating regular expressions, and then use the algorithms provided in the paper to reduce them, create
and optimize εNFAs, and construct NFAs from those εNFAs. The algorithms described and given will be
followed as closely as possible to ensure that the sizes and time complexities are comparable to the paper.

4 Software Design and Testing

For the project, we created software that implemented the optimized creation of a follow εNFA. We did so
by first reducing the given regular expression using Algorithm 1. We could then construct an εNFA from
the reduced regular expression using Algorithm 4 in the paper. Then, using Algorithm 20, we constructed
the final follow automata using ε-elimination on the εNFA.

In this section, we present the data structures and algorithms developed for this software as well as the
testing methodologies for both software soundness and completeness and for complexity testing. For a full
description of the classes involved in the implementation, refer to Appendix A for the full API.

4.1 Data Structures

Set Definition:
The Set class is essential to our software as four of the five attributes of an automaton are represented as sets.
The underlying structure of a Set object is a Dictionary, meaning that the Set object achieves the property
of an unordered grouping of elements. Each set consists of key, value pairs where the keys are integers or
strings and the values can be of any type, although the value type should be consistent over the entire set.
The Set class contains functions to discover information about and modify the Set, as well as functions that
run only on sets of Transitions.

Regular Expression Node Definition:
A regular expression node (a node in the tree representing a regular expression) is defined as an object with a
value that is either an element of the alphabet of the automaton or an operation, in addition to two children
and a parent, representing the other nodes in the tree to which the object is connected. The definition of
this class also contains functions to test whether the language recognized by a tree rooted at a specified node
is equal to null, is equal to the empty word, or contains the empty word.

Regular Expression Tree Definition:
In order to represent any given input regular expression, we chose to design a general tree data structure,
since a regular expression is essentially a set of characters related by operations. Each internal node of the
tree will be an operator (a two-operand union or ‘+’, a two-operand concatenation or ‘.’, or a one-operand
Kleene star ‘∗’) and each leaf node will be a character of alphabet A (including E to represent ε, or the
empty word, and N to represent ∅, or null). Note that due to the chosen symbols for ∅ and ε, the alphabet
A will not be allowed to contain uppercase letters.

The tree is recursively defined in the following manner:

Expr ::= N

| E

| a, a ∈ alphabet A
| Expr + Expr

| Expr . Expr

| Expr*

| ( Expr )

This class also contains functions to reduce the size of the regular expression via an algorithm specified
in the paper, as well as a function to help build an automaton.
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State Definition:
The State class is a very simple class to aid in the representation and building of an automaton. A State object
has three attributes: identification, acceptance, and merge. The identification is an integer representation of
the State. Note that states in an automaton are not in numerical order due to the way in which the automaton
is constructed. The acceptance property is a boolean property defining whether the the state is accepting.
Lastly, the merge property has a value of 0, 1, or 2 that is set during the initial automaton construction
process. These values identify whether the state is part of a concatentation or iteration operation, which the
program needs to know to order to perform Algorithm 4 modifications.

Transition Definition:
Transition is another straightforward class. A Transition object is represented as a triple containing the
source state, the transition label (represented as a character), and a destination state.

Finite Automaton Defintion:
In order to represent any finite automaton, we chose to design a four-tuple (or 4 element tuple or collection),
M = (Q, δ, q0, F ). The elements within the representation for an Automaton object are defined as follows:

Q is a set containing all of the various states of the finite automaton M .

q0 is the starting state (identification ‘0’).

F is a set containing all of the final or accepting states (where F ⊆ Q).

δ is a set containing all of the transitions in the finite automaton M .

Note that we do not include the Alphabet A in our Automaton construction; this is instead hardcoded
and set up upon initial Automaton creation. The majority of the functions within the Automaton class
are functions that operate on an Automaton object to modify it in some way or discover information about
it. These include functions that execute the modificiations defined in Algorithm 4, that peform epsilon
elimination following Algorithm 20, and that test whether a word will be accepted by an automaton.

4.1.1 Algorithms

Based on the paper, we identified three main algorithms that were needed to convert any given regular
expression to a follow NFA. The general procedure is as follows: We begin with a regular expression. The
algorithms for ∅-reduction, ε-reduction, and ‘∗’-reduction (as defined in the paper) are all applied to this
regular expression to obtain a reduced regular expression. Then, the reduced regular expression is converted
into an εNFA. This conversion process is defined by the diagram presented by the paper representing the
newly proposed follow εNFA construction (see Figure 1), as well as the futher modifications to remove
unnecessary states and transitions. Lastly, the εNFA is converted to an NFA via an ε-elimination algorithm
that makes use of topological sorting (a graph theory concept). The functions used to simulate these
algorithms are presented below.

reductions: This function is called on a regular expression. It applies three iterations of reductions to the
regular expression – ∅-reduction, ε-reduction, and ‘∗’-reduction. These subroutines are all recrusive
functions that are initially called on the root of the regular expression and traverse through the tree.
They perform reductions within the tree by removing children of a node and overwriting the value
where appropriate.

algorithm4: This function must be called on a reduced regular expression. It’s primary purpose is to
call the automaton constructor and then to call the createENFA function on the newly instantiated
automaton – createENFA will update each element of the automaton quintuple appropriately and then
algorithm4 returns this automaton. The createENFA function simulates the creation of the follow
εNFA based soley on Figure 1. This function must be paired with the optimize function to obtain
the full functionality of Algorithm 4.
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optimize: The optimize function corresponds to the second half of Algorithm 4 – it implements the
further improvements defined to eliminate ε-cycles and unnecessary ε-transitions. It follows that this
function must also be able to merge states in the automaton. Note that while there are subroutines for
optimizatios (a)-(c), there is no subroutine for optimization (d) because our method of set construction
eliminates the possibility of the occurrence of multiple transitions with the same source state, transition
label, and destination state.

algorithm20: This function is called on the εNFA created by the algorithm4 and optimize functions and
returns the final follow NFA. The general idea of the ε-elimination is similar to the algorithm that was
learned in class – if there exists a path between states p and q that involves all ε-transitions (an ε-path),

and for state r, there exists a transition q
a−→ r, then we remove all of the transitions mentioned and

add a transition p
a−→ r. However, this ε-elimination algorithm uses topological sorting to order the

states based on the ε-transitions within the εNFA. It is important to note that the topological sorting
fails if any ε-cycles remain after the optimize function completes.

A full list of functions used in this implementation with valid Python syntax can be found in the API
section of the Appendix (Appendix A).

4.2 Experimental Protocol for the Implementation

The three fundamental properties of our program that our experimental protocol must check are soundness
(the output of our program is ensured to be correct), completeness (each input our program reads results in
an output), and program performance (examining both space and time efficiency).

4.2.1 The Design of the Experimental Protocol

GenerateRandRegex.py
The experimental protocol is composed of three Python object classes. The primary algorithm that defines
the testing protocol is found within “GenerateRandRegEx.py” is generateExprCore(number of operations,
regularExpression tree object name), which generates a single regular expression pseudo-randomly. Every
other routine, procedure, and object class is built from this core algorithm. This algorithm generates a reg-
ular expression, represented in string form using the conventions of the RegExTree.py and RegExNode.py
classes, and in effect Python code to be used in TestingProtocol.py, using recursion controlled by the pari-
tioning of a total number of regular expression operations. This way of controlling recursion means that the
number of operations designated to be any output regular expression (provided in the first argument of the
generateExprCore(...) algorithm), and ultimately this manner of controlling the recursive generation of a
regular expression accounts for all possible forms of regular expressions that should be generated.

If we examine any subtree of regular expression tree, we see that any particular component subtree has
one of three possible structures, assuming that the root node is either a concatenation or union operator (if
it is a Kleene’s Star operator, it can only have a left-subtreee): Symmetrical (both children nodes contain
roots of subrees with an equal number operators), Left-weighted Asymmetrical (only the left subtree that
has more operators than the right subtree), and Right-weighted Asymmetrical (the right subtree contains
more operators than the left subtree). A good regular expression generation algorithm should potetnailly
be able generate each kind of regular expression structure at any point within the overall output regular
expression tree. To ensure that all three possible expression structures are possible, the generateExprCore(...)
algorithm, once called, will randomly select a number k between 0 and n-1 (inclusive, note that we cannot
have n be a potential value for k because we need to subtract 1 at every node that is an operator to properly
reflect the amount of operators left to partition for any given subtree), and will partition the total number of
argument operators allowed at any given subtree, allowing for any possible type of symmetrical, left-weighted
asymmetrical, and right-weighted asymmetrical structure.. Further, at each node, the algorithm will pick a
number between 1 and 3 (inclusive) and will select an operator to put at that node (1 means Concatentation,
2 means Union, and 3 means Kleene’s Star) and will then proceed to recurse into that expression’s arguments
(where each arugment will become an additional node in the overall regular expression tree). Any time that
a node is chosen to be a terminal (a character a-z or ε), the algorithm will randomly pick an index number
between 0 and 26 (inclusive), and set that node appropriately to the terminal indexed (by that number)
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from the alphabet inherently coded into the GenerateRandRegEx class (this random choosing for a terminal
is done at the very start of each call to the algorithm, a termainl variable is generated and set aside).

Further, this generation algorithm will simultaneously generate a unique key, or string, that is essentially
a “roadmap” of the final output regular expression (this key serves as a sort of “roadmap” because it is
constructed at each node of the regular expression and will contain a unique symbol to represnt what kind
of operator or terminal is at the current node). This key is crtical to esnure regular expression uniqueness in
the upper level classes that are built upon the functioning of the generateExprCore(...) algorithm. While the
generateExprCore(...) algorithm could theoretically generate a random regular expression of any possible
size (as small as length = 2, for example: z* , and up to size∞), due to limitations of time and perhaps stack
space (though the latter has not posed a problem anymore for this project due to the stack modification code
added in TestingProtocol.py), we only tested to see if generatedExprCore(...) could generate an expression
with a maximum of 1,000,000 million operators and a potential expression length in between 1,000,000 and
2,000,000, and found that the algorithm was successfully able to. Further, this algorithm will also keep track
of a few expression statistics that will be used in the validateExpr(...) routine. The second parameter to
generateExprCore(...) is the name of the desired regular expression tree object that generateExprCore(...)
is building (in other words, generateExprCore(...) generates a string of Python code that will ultimately
have to be parsed to create the actual RegExTree object.

The function generateExpr(number of operations, seed, regularExpression tree object name) is simply a
wrapper function meant to give the programmer better control of the primary regular expression generation
algorithm. The extra parameter “seed” is used to initalize the random number generator as well as to
faciliate experimental reproducibility in the results of the generateExprCore(...) algorithm, and thus the
seed makes the algorithm pseudo-random. Further the use of this wrapper function is necessary so that the
expression generation algorithm can be called as many times as desired, since the wrapper function will do
a little behind-the-scenes work to clean up the “GenerateRandRegEx.py” object class’s data members, as
well as store the critical input parameter that will determine the total number of operators in the output
regular epxression (for use in the validity rountine described next).

To guarantee correctness of the regular expression generation algorithm, one can use validateExpr(...),
also found within “GenerateRandRegEx.py”. This routine will use the statistics collected in generateEx-
prCore(...) to verify that the number of Union, Concatenation, and Star operators is equal to the number of
operators input into generateExpr(...). Further, the routine will calculate how many total terminals should
be in the output expression based on a simple rule and the number of each operator, and compare this
prediction to the collected number of actual terminals. The key of a regular expression that is malformed
and does not pass this validity check will be logged in a log file. One current limitation is that this function
must be used before calling generateExpr(...) again, as the statistics for the immediately generated regular
expression will be cleared.

RegExDataSet.py
The “RegExDataSet.py” object class is a child class of the “GenerateRandRegEx.py” and will ultimately
utilize the regular expression generation algorithm (using the wrapper function) and the validity routine to
generate a collection of a specified size of random, unique regular expressions. Uniqueness is ensured by
comparing the key (as specified in the description of generateExprCore(...)) of a newly generated expression
to each key of each regular expression string currently stored in the RegExDataSet collection, and if that
key is found, the new expression is simply discared, but if it is not, then the expression is added to the end
of the collection.

TestingProtocol.py
The “TestingProtocol.py” object class is a child class of “RegExDataSet.py” and is the actual class that
contains the testing procedure to collect performance data. This class is designed for the programmer to use,
as there are several lines that are uncommentable to collect different kinds of data and store them to the final
“data.plot” file. It is important to note that a critical Python hack, the use of the Python function eval(),
has been used to get everything to work. The “GenerateRandRegEx.py” and “RegExDataSet.py” classes
will ultimately generate a colleciton of lines of Python code that must be parsed by the Python interpretter.
Each regular expression within the RegExDataSet specialized collection is a line of Python code following the
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API of “RegExTree.py” and “RegExNode.py.” In essence, the eval() function is used to parse each line of
Python code and ultimately construct a regular expression tree from the code. Another hack is found within
the “TestingProtocol.py,” as each character must be encoded into an identically named variable that the
eval() function will evaluate to the appropriate character. Simply put, in the spirit of metaprogramming,
the “GenerateRandRegEx.py,” “RegExDataSet.py,” and “TestingProtocol.py” object classes work together
to write and parse further Python code that will generate the set of test regular expressions. Further, using
the limits of the experiment that the programmer inputs into “limit” and “seed” the testing protocol will
pre-allocate a collection that will serve to organize the data being collected based on regular expression size
(i.e. the index of each element of this collection represents the regular expression size). It is important to
note that seed number would need to be increased in order to smooth out a graph curve, or reduce, the
variance of the data points collected.

Finally, the data, which “TestingProtocol.py” formats exactly for GNUPlot, is then used inside the “make-
file.sh” script to generate the three requried plots of data that examine the desired performance characteristics
of the team’s automata generation algorithms. The testing protocol was broken into 3 different versions,
“TestingProtocol noCorrectness.py”, “TestingProtocol min.py”, and “TestingProtocol max.py”. Each ver-
sion handled the data differently: “TestingProtocol noCorrectness.py” took collected data such as execution
time or automaton size and kept a running average of that time or size at that index in the pre-allocated
collection, “TestingProtocol min.py” kept a running minimum on the same data (that is, it compared every
new time or size to the current one at a given regualr expression size and took the minimum of the two),
and “TestingProtocol max.py” kept a running maximum on the same data. The Linux Computing Cluster
was used to compute the massive data sets we required, which was done through a small system of scripts
that connected to a primary batch job script (which was sent to the computing cluster).

4.2.2 Testing Program Soundness

For the primary functions of our program (which will determine the overall program completeness), we will
test soundness as follows:

reductions(regex): We feed thousands of regular expressions of random sizes into this function and then
proceed to feed the resulting output (a reduced regular expression) back into the fucntion. If the
resulting output of both calls to the function is identical, we have verified that this function is sound.

εNFA and NFA constructions: To test that our εNFAs and NFAs are being constructed properly, we run
isAccepted(string) on the εNFA after optimizations and then on the corresponding NFA to ensure
that the string is accepted or rejected by both automata. More specifically, for each regular expression,
we generate thousands random strings with a random length between 0 and 20. The characters that
are used in the string generation use only the characters in the alphabet of the current automaton that
is being checked, to give us a better chance of getting accepted strings. The “True” or “False” outputs
for each string are stored in arrays for each automata. The arrays are then checked for equality. This
makes it much easier to check soundness rather than doing the checking for equality for each of the
automata ourselves.

4.2.3 Testing Program Completeness

Our experimental protocol should test for crashes. To do this, we will use a method similar to above, but
instead ensure that for each randomly generated regular expression and string, we have no crashes while
running through the implementation of the paper. More specifically:

reductions(regex): We pass thousands of regular expressions into this function and ensure that for every
input there is some sort of output, whether it be a reduced regular expression or an error message that
we generated ourselves.

εNFA and NFA constructions: To test that our program doesn’t crash on the construction of εNFAs
and NFAs, we run a few thousand reduced regular expressions through createENFA(reducedRegex)

and then pass the produced εNFA into algorithm20(). For each reduced regular expression used,
both constructions complete without resulting in a crash.
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This testing was done in parallel with our tests for soundness and obtaining our data for the graphs.
Those required the generations of thousands of regular expressions, which were then run through all of our
algorithms (reducing, generating εNFAs, optimizing, generating NFAs). Because no crashes occurred during
all of this, we trust that our code has the property of completeness.

4.2.4 Testing Program Performance

To ensure that our program runs with a complexity that agrees with the complexity given in Theorem 11
(page 148) and Theorem 21 of the paper (page 154), we run the entire program using about 1,600,000 regular
expressions (400 expressions of length 2 to 800, 4,000 seeds) and create nine graphs: three for the execution
time versus the size of the regular expression, three of space used for the construction of a εNFA versus
the size of the regular expression, and three of space used for the construction of the final follow-automaton
versus the size of the regular expression. For each comparison, one graph is made for each of the average
values, maximum values, and minimum values. We have verified that for the time data plots and the three
space data plots for construction of a final automata, the relationship is O(|α|2) for both time and space,
which agree with the paper. Further, for the data plots for the construction of an εNFA, the relationship is
O(|α‖), as asserted in the paper. All data was plotted on a log scale, so a data curve, in order to exhibit
the appropriate desired behavior as stated in the paper, would need to be a straight line (and a slope that
would need to as close to possible to the base linear or polynomial function desired). These graphs can be
seen in Appendix B. It is interesting to note that for all graphs, raising the seed parameter did not smooth
out the curve evenly, as variance appears to get worse towards the end of a given data curve (or towards the
maximum tested expression length). For the graphs that either plotted minimum or maximum values, one
can see that having a steep seed size (as used in the plots that contained averaged data) in relation to the
expression length range did not yield as great a smoothing effect as it did in the averaged data plots.

4.2.5 Subroutine testing

Within our major algorithms (reductions, algorithm4, optimize, and algorithm20), there are numerous
subroutines that needed to be created and tested for correctness as well. The tests and corresponding output
for some of these subroutines can be seen using any classes that end with “Tester”.

4.2.6 Potential Protocol Improvement

Though the primary regular expression generation algorithm was validated, and is a sufficient check given
the scope of this experiment, a more formal and rigorous algorithmic proof of its output should be conducted
using a routine that accepts as input the regular expression outputted by the generation algorithm, then
checks to make sure all of the parentheses are balanced and all operators have appropriate arguments (i.e.
verify that no blank arguments popped up, which would result in a malformed expression). Further, while the
current protocol does sufficiently create a working set of unique regular expressions of wide range of lengths,
a great deal of space inefficiency resutls from this process. The middle man class, “RegExDataSet.py”, could
very simply be removed, and the flow of regular expressions could be generated and this process could be
integrated right within “TestingProtocol.py” and the uniqueness could occur right on the spot within the
primary program loop of that class (however, this would not cut out the linear search time needed to compare
the key of a new expression to those in the current RegExDataSet collection object, all it would simply do
is move this linear search time to occur later but within the “TestingProtocol.py”, as one would still need
to check the key within any collection one creates to store the expressions at that stage). Additionally, no
study was conducted as to the time efficiency of the built-in Python evaluation function used to parse the
regular expression Python code strings. It would be possible to rewrite the expression generation algorithm
to recursively construct a regular expression tree using RegEx object nodes, although this could take more
space, as the object data tied to a RegEx node is larger than of string. Whenever a RegEx tree is created
in our current version of the testing protocol, it is used on the spot, then discarded after all of the paper
algorithms have been applied to it. It was decided that this was more space efficient, rather than storing a
collection of RegEx node objects trees, however a study of this should be conducted to verify this assumption.
Finally, an algorithm that range generates expressions solely based on a given expression output length would
be better and allow for no range in possible expression sizes in the output (currently, our implementation
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yields an expression that is guaranteed to have the same number of operators entered at time of input, but
the expression size of the output could fall within a range of sizes, which requires more seeds in the final
program to create a better distribution of regular expression sizes) and ultimately more control over the final
expression output.

4.3 Project Comments

4.3.1 Reflection on our Program

After running our algorithms using thousands of regular expressions and their corresponding εNFAs and
NFAs, we were able to collect runtime and size data. Plotting those data and comparing the time and space
complexities to those claimed in the paper revealed that our algorithms support the claims of the authors.

4.3.2 The Use of Python for this Project

There were pros and cons to using Python for this project. The major benefit was that each team member
already knew Java, and Python is very easy to learn with this background. However, Python is certainly not
the best choice for a project like this that deals with a lot of recursion, list comprehension, and tree traversal.
There were many instances where we wished we had chosen OCaml or Haskell due to the amount of code
that certain algorithms require in Python versus a functional language. However, there were also times when
it was great to be using Python because we can could local variables, whereas functional languages cannot.

Another point to be made about Python that had benefits, but also caused some issues, is the fact that it
is untyped. At first it was great to not worry about variable, parameter, or return types because it was less
coding and made progress a bit faster, but as our code base grew, it became difficult to remember exactly
what types we had certain functions taking in (i.e. a string representation of an integer versus an actual
integer). This led to the frequent need to use the Python debugger (PDB) to discover exactly what was
happening, as ever though the logic was wrong, the program would still run.

4.3.3 Teamwork Experience

The distribution of work ended up being fairly even at the end at the end of the project. The algorithms
were distributed among two team members, most of the testing and graph generation was given to another
team member, and all members worked on the paper and final presentation. The version control repository
(SVN) was extremely useful for this project and frequent team meetings allowed us to keep track of the
progress of all team members.

12



Appendices

A API

A.1 Set

This class defines a Set type, not using the python-provided sets. It contains the operations necessary to
interact with sets such as adding, removing, and getting elements, and it also provides for the ability to union,
intersect and take the difference of two sets. This project does not allow the same key to be associated with
two different values

Class Constructor:

def __init__(self): Constructs an empty Set object. For the Set, keys can be

numbers or strings.

Class Methods:

def addElement(self, key, value): Adds an element to the set

Params: key - a key to associate with the value

value - the value of the element to be added

def removeElement(self, key): Removes an element from the set using the specified key

Param: key - they key associated to the value to be removed

def getElement(self, key): Returns the value corresponding to the key if

the key is present in the Set, None otherwise

(serves to test whether the element is present in the set)

Param: key - the key associated with the element we want to

access

Returns the element or None if it is not an element

def setValue(self, key, value): Sets the value of the key value pair for the pair

corresponding to the given key

Params: key - the key for the pair the user

would like to update

value - the new value for the pair

def size(self): Returns the size of the set (number of elements)

def setUnion(self, other): Unions two sets

Param: other - the set to union the current set with

Returns a set that is the union of the two sets

def setIntersect(self, other): Intersects two sets

Param: other - the set to intersect the current set with

Returns a set that is the intersection of the two sets

def setDifference(self, other): Takes the difference of the two sets

Param: other - the set to take the difference of the current

set with

Returns a set that is the difference of the two

def printFullSet(self): Prints all elements of the set in the form (key, value)

with elements seprated by commas
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def printKeys(self): Prints the key for each pair in the set with the values

separated by commas

def printValues(self): Prints the value for each pair in the set with the values

separated by commas

def copySet(self, oldSet): Copies all elements from the parameter to the Set on which

the function is being called

NOTE: the Set on which the function is being called must

already be initialized

Param: oldSet - the set to be copied into the current set

def eTransitionFrom(self, state): Finds all transitions that exist from the given state to

another state via an epsilon transition. Function should be

called on a set of Transitions.

Param: state - the state to use in the transition search

Returns a list of epsilon transitions

def eTransitionTo(self, state): Finds all transitions that exist from a state to the given state

via an epsilon transition. Function should be called on a set of

Transitions.

Param: state - the state to use in the transition search

Returns a list of epsilon transitions

def transitionFrom(self, state): Finds all transitions that exist from the given state to another

one via a transition that is not epsilon. Function should be

called on a set of Transitions.

Param: state - the state to use in the transition search

Returns a list of transitions

def transitionTo(self, state): Finds all transitions that exist from a state to the given state

via a transition that is not epsilon. Function should be called

on a set of Transitions.

Param: state - the state to use in the transition search

Returns a list of transitions

def transitionExists(self, f, v, s): Determines if a transition exists with the specified

states and transition

Params: f - the source state of the transition

v - the transition label

s - the destination state of the transition

Returns true if the specified transition exists and

false otherwise

def findTransitions(self, string, state):

Finds transitions that have either an epsilon transition or a

transition with the specified transition label from a given

state

Params: string - the transitionLabel to look for

state - the state to look from

Returns an array of transitions from the given state with an

epsilon transition or a transition with the specified label
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def removeTransitions(self, state): Removes all transitions in the set that have a sourceState

equal to the state passed in

Param: state - the state to remove completely from the eNFA

def sort(self, transitionSet): Sorts a set of states topologically with respect to the

order p is less than or equal to q if and only if

there exists an epsilon transition from p to q.

Should be run on a set of states.

Param:transitionSet - the full set of transitions over

which the function should be run

Returns a list of states ordered from least to greatest

A.2 RegexNode

This class defines a Regular Expression Node type. It contains the operations necessary to interact with
a node such as creating one, and setting its parent and children. It also has accessor methods and special
methods pertaining to the paperto determine the language from a node.

Class Constructor:

def __init__(self, value, leftChild, rightChild): Constructs a basic regular expression node

element which is the fundamental component

of the regular expression tree. It has a

value, a leftChild, and a rightChild.

Class Methods:

def getCurrentNodeVal(self): Gets the value of the current node

Returns the value of the node

def getLeftChild(self): Gets the left child of the current node

Returns the left child node of the current node

def getRightChild(self): Gets the right child of the current node

Returns the right child node of the current node

def getParent(self): Gets the current node’s parent

Returns the current node’s parent if it has one

def setParent(self, newParent): Sets the current node’s parent. Takes care of setting the new

parent as the grandparent’s child, if there is a grandparent

Param: newParent - a new node that will be used as the new parent

def isLeftChild(self): Determines if the current node is the left or right child

Returns true if it is the left child and false if it is the

right child

def otherChild(self): Determines the "sibling" of the other node

Returns the sibling of the current node if there is one

def eIs(self): Tests whether the language recognized by tree rooted at the

given node is equal to E

Returns true if the language recognized is E and false otherwise
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def eIn(self): Tests whether E is an element of the language recognized by

the tree rooted at the given node

Returns true is E is an element of the language and false

otherwise

def nullIs(self): Tests whether the language recognized by the tree rooted at the

given null is equal to N

Returns true if the language is equal to N and false otherwise

A.3 RegexTree

This class defines a Regular Expression Tree type. It contains the operations necessary to interact with a
tree such as traversing, constructing, and printing (postorder). It also contains methods that are necessary
for implementation of the paper such as reducing a given regular expression tree to contain as few epsilons,
Kleene Stars and nulls as possible. *The nulls are either completely removed or the entire tree reduces to
null

Class Constructor:

def __init__(self): Initializes a basic regular expression tree, initally set to be

the emtpy set N.

Class Methods:

def symbol(self, char): Creates a terminal node with a specified value

Param: char - the character to set as the terminal value

Returns the created node

def eps(self): Creates a terminal node with the specific value of E for empty

string

Returns the created node

def null(self): Creates a terminal node with the specific value of N for null

Returns the created node

def union(self, node1, node2): Creates a node with value +, which is the union of two other

nodes

Params: node1 and node 2 - the two children nodes of the union

Returns the created node with any subnodes

ef concat(self, node1, node2): Creates a node with value . for concatentation

Params: node1 and node2 - the two children nodes of the

concatenation

Returns the node and any subnodes

def star(self, node): Creates a node with value * for Kleene Star

Param: node - the root of the subtree that will be starred

Returns the star node and its subnodes

def construct(self, rootNode): Sets the passed in node as the root and returns a now completed

tree

Param: rootNode - the root of the tree

Returns the root node (entire tree)
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def printRegex(self): Prints the regular expression that the tree represents

def printTree(self): Prints a tree in postorder traversal (calls traverse)

def inTraverse(self, node): Traverses a tree in-order (for printRegex())

Params: node - the node to traverse from (initial call uses root)

def postTraverse(self, node): Traverses a tree in post order and prints it out as it traverses

Param: node - the node to start traversing from

(usually the root)

def starReduction(self, node): Implementation of the *-reduction portion of Algorithm 1

’for any vertex labelled by *, if its child is also labelled

by *, then replace it by its child’

Param: node - the node that is currently being examined

for reduction

def eReduction(self, node): Implementation of the E-reduction portion of Algorithm 1

’for each vertex with the language from that node(B) equalling

E, then if the parent of B is labelled by ., then replace the

parent by the other child if the parent is labelled by *, then

replace the parent by the child if the parent of B is labelled

by + and E is in the language of the other child, then replace

it by its child’

Param: node - the node that is currently being examined

for reduction

def emptyReduction(self, node): Implementation of the null reduction portion of Algorithm 1

’compute, for each vertex B,whether ot not L(B) = N and then

modify the tree such that at the end, either it evaluates to

N, or contains no N’

Param: node - the node that is currently being examined

for reduction

def reductions(self): Calls each of the reductions in succession. This is equal to

running Algorithm 1

def algorithm4(self): Implements Algorithm4 from the paper, which translates a

regular expression into an eNFA

Returns the automaton

def getSize(self, node): Returns the size of the regular expression as defined by the

paper
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A.4 State

This class defines a State type. Each has a unique identifier and a flag as to whether it is an accepting state
or not.

Class Constructor:

def __init__(self, identifcation, acceptance, merge): Constructs a state with the specified

identification value, whether it is

accepting or not, and a flag to be used

by the merge function as part of

Algorithm 4

Class Methods:

def getID(self): Gets the unique identifier of the current state

Returns the value of the identifier (integer)

def getAcceptance(self): Gets whether the current state is accepting or not

Returns true is the state is accepting and false otherwise

def __str__(self): Prints a state

A.5 Transition

This class defines a transition. A transition is a tuple that consists of a state, a transition character, and
another state.

Class Constructor:

def __init__(self, sourceState, transitionLabel, destinationState):

Constructs a basic transition triple. A transition triple

is composed of a state, transition label, and a

destination state (in that order)

Class Methods:

def getSourceState(self): Gets the first value in the tuple (source state)

Returns the first value of the tuple, which will be a

State type

def getTransitionLabel(self): Gets the second value of the tuple (transition label)

Returns the transition label (a character in our case)

def getDestinationState(self): Gets the third value in the tuple (ending state)

Returns the last value of the tuple, which will be a

State type

def __str__(self): Prints a transition
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A.6 Automaton

This class defines an Automaton with the standard properties of an Automaton (set of states, an alphabet,
set of transitions, starting state, set of final states) It is a tuple, but does not use tha Python-provided tuple

Class Constructor:

def __init__(self, Q, delta, q0, F): This constructs an automaton, which is a tuple

(not using the python provided tuple). The tuple

consists of:

Q - a set of states

A - the alphabet used (hardcoded in)

delta - a set of transitions

q0 - the starting state

F - a set of accepting states

Class Methods:

def algorithm20(self): This implements algorithm 20 from the paper which takes

an eNFA and turns it into an NFA and then returns the NFA

def createENFA(self, currentNode, nextStateID, fromState, toState):

Traverses through a regular expression tree, creating

states and transitions according to the algorithm in the

paper for creating eNFAs.

Params: currentNode - the current node of the RegexTree

being traversed

nextStateID - the id that the next created state

will be assigned (incremented by one each time a

state is created)

fromState - equivalent to sourceState in a

transition

toState - equivalent to destinationState in a

transition

Returns nextStateID so that it can be passed up through the

recursive calls

def optimize(self): Removes unnecessary transitions in eNFA according the the

paper

def printAutomaton(self): This will print an automaton. It will print the value

of each member of the "tuple" and if it is a set, a special

print function will be defined for how to print the set

def getSize(self): Returns the size of the automaton as defined by the

paper

def isAcceptedByE(self,state): Recursively checks to see if when we are at the end of

a word, there are e-transitions to an accepting state

Param: state - that state to check for e-transitions

from

Returns true if there are e-transitions to a final state

and false otherwise
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def isAccepted(self, string, state): Checks to see if a string is accepted by the automaton

Params: string - the string to check

state - the state to check from (original call

needs to make sure state=0

Returns true if the word is accepted and false otherwise

def findCycle(self, currState, origState, visitedSet):

Builds lists of states that form epsilon cycles within

the automaton. Used as a helper function for optimizationB.

Params: currState - the state currently being visited

origState - the state in the middle of an iteration

visitedSet - the set of states and boolean values

indicating what states have already been visited

Returns a list of lists that contain possible paths for an

epsilon cycle

def concatMerge(self, mergeFrom, mergeTo):

Effectively merges two states of the automaton

Params: mergeFrom - the state that will be merged into

another state

mergeTo - the state into which the two states

will merge

def iterMerge(self, cycleList): Merges the states of the automaton and removes

the transitions, following the regrouping defined

by optimizationB

Param: cycleList - a list of lists that gives the epsilon

cycles in the automaton

def optimizationA(self): Merges two states that are connected by an epsilon

transition after concatenation

def optimizationB(self): Identifies the states in the middle of iterations

contained in epsilon cycles and defines how the states

of the automaton should be merged, then calls out to

iterMerge function for actual merging

def removeAllECycles(self): (Similar to the operation of optimizationB) Identifies

epsilon cycles formed by merges from previous optimization

iteration and defines how the states of the automaton

should be merged.

Returns the number of cycles found (length of the

cycles list)

def optimizationC(self): If there is one initial transition from the starting

state and it is labelled by an epsilon, the starting

state is merged with the destination state of that

epsilon transition

def optimize(self): Removes unnecessary transitions in the generated eNFA by

calling out to functions that execute the three

modifications
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B Graphs

In this section, beginning on the next page, you will find the nine graphs referenced in the section of the paper
that explained how we tested program performance. Each figure is accompanied by a caption explaining
what the graph describes as well as a brief comment on data point variance.
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