
Your Second Physics Simulation:

A Mass on a Spring

I. INTRODUCTION

At this point I think everybody has a working “bouncing ball” program. In these pro-

grams the ball moves under the influence of a very simple force: the constant force of gravity

(except for the time during impact). But what if the force isn’t constant? What if it de-

pends on the position, like the force exerted by a spring, or the force of gravity when you

move very far away from the surface? What if it depends on velocity, like the force of air

resistance? The goal of this exercise is to modify your working bouncing ball program so

that it is is easy to use for just about any force.

The question is: What do we have to modify in our working programs? The “guts” of

the calculation is carried out in the while loop. Inside the loop there are commands that

tell the computer how to increment the velocity and the position according to the rules

~r2 ' ~r1 + ~v1∆t (1)

~v2 ' ~v1 + ~a1∆t (2)

In my program the lines that implement these vector rules look like

ball.pos = ball.pos + ball.velocity*dt

ball.velocity = ball.velocity + a*dt

where I have previously defined the acceleration as

a = vector(0,-9.8,0)

If I change the force, are the updating rules expressed in Eqs. (1) & (2) still valid? Yes —

they just come from the definitions of velocity and acceleration. This means that I don’t

have to change anything about the structure of my loop that updates the values of position

and velocity. What does change when the force changes is the acceleration — it’s no longer

the constant vector (0,-9.8,0). Newton’s second law tells us that we can figure out the

new acceleration if we know the net force: ~a = ~Fnet/m.

The plan is to define a force function near the top of your program. Then you can rewrite

the line that updates velocity in terms of the force function and mass instead of in terms

of a constant acceleration. Then all it will take to change forces is to change the function

1



definition; no additional changes will be necessary in the while loop. The topic of the next

section is how to define functions in Python.

II. PYTHON AND FUNCTIONS

As a first example of a Python function, let’s do a very simple example of a function that

calculates the square of a number. We will give this function the name square and it is a

function of a single argument that we call x in the function definition. In an IDLE window

enter the following:

from visual import *

def square(x):

y = x*x

return y

a = 4

b = 3

print square(2)

print square(a)

print square(a*b)

Executing this program should result in the output values 4, 16, and 144. Note that the

square function could be defined in a shorter way without the intermediate value of y:

def square(x):

return x*x

Now let’s define the function f(x) = x2
− 3. I’m going to do this in an overly long manner

to make a point.

def f(x):

y = square(x)

c = 3

y = y - c

return y

If you define f(x) as above, and follow it with the statement

print f(6)

you will get the expected value of 33. (The definition of square must still be in your program

2



for this to work as written.) But if you follow it with the statement

print f(c)

you will get an error message. You might think that you should get the value 6, because of

the statement c=3 in the function definition, and f(3) = 32
− 3 = 6. But the assignment of

the value 3 to the variable c is local to the function; the rest of the program doesn’t “know

about” this assignment.

In the examples above the functions returned scalar values. It’s also possible to define

functions that return vectors. For example, a constant gravitational force in the negative

y-direction can be defined as follows:

g = 9.8

def forceG(m):

return vector(0,-m*g,0)

If you follow the function definition above with the statement

print forceG(2)

the output will be

<0, -19.6, 0>

Some of you defined the variable g as a vector instead of a scalar, and in this case the force

definition would look something like

g = vector(0,-9.8,0)

def forceG(m):

return m*g

which should give the same output as before.

In the case of a mass attached to a linear spring stretched in the y-direction the force on

the ball is Fspring = −ky, where k is a constant. A definition of a vector force imparted by

this spring looks like:

k = 2

def forceSpring(y):

return vector(0,-k*y,0)

If you follow the function definition above with the statement

print forceSpring(3)

the output will be

<0, -6, 0>

3



The definition of forceSpring assumes that the input value y is a scalar, but if you want

to input the position as a vector, the function definition could look like this:

k = 2

def forceSpring2(r):

return vector(0,-k*r.y,0)

If you follow the function definition above with the statements

r = vector(1,3,2)

print forceSpring(r)

the output will be

<0, -6, 0>

Finally, it’s possible to define functions of more than one variable. The force on a particle

might depend on the position of the particle, the velocity of the particle, the mass of the

particle, or some combination of these, so in a bit of forward thinking it’s useful to define a

function that can handle all such cases. For example, we can re-write the spring force with

“extra” variables for mass (m), and velocity (v) that aren’t used in this case:

def force(m,r,v):

return vector(0,-k*r.y,0)

III. IMPROVING YOUR BOUNCING BALL PROGRAM

1. You should start today by opening a simple bouncing ball program that you have

written previously and save it with a new name. We will modify this program, but it

should still produce the same output as before.

2. Include a statement near the top of your program defining the mass of your ball. (A

mass of 1 is fine to start with.)

3. Include near the top of your program a definition of a force function describing the

constant downward force of gravity that is acting on the the ball. I encourage you to

write this as a function of mass, position, and velocity, even though the gravitational

force only depends on the mass.

4. As I said in Section I, my program has a line that updates the vector velocity that

4



looks like

ball.velocity = ball.velocity - a*dt

(where a has been defined as a vector). I want you to find the analogous line in your

program, and I want you to change it so that the acceleration is calculated in terms

of the force function you have defined and the mass.

5. If you made the changes correctly, your bouncing ball should bounce just like it did

before you made the changes.

IV. PROGRAMMING A MASS ON A SPRING

1. Save the program you wrote in the previous section with a new name.

2. Modify the program to simulate the motion of a mass on a spring. (You can leave the

floor where it was for the time being.) You may:

• Assume that the equilibrium position of the mass is (0,0,0).

• Assume that the restoring force on the mass is given by Fspring = −ky.

• Assume that m = 0.5 and k = 1.

• Assume that the mass starts at rest.

• Remove any statements that make the ball bounce; the ball will change direction

under the influence of the spring.

3. Your program should show sinusoidal oscillation of the mass about the equilibrium

position.

V. MAKING THINGS PRETTY

After you get the mass oscillating, let’s make it look nice.

1. Move the floor down so that it is below the lowest point of the mass’s oscillation.

2. Add a spring (a helix object) with one end attached to the floor and one end

attached to the mass.

5


