
Physics 212E Classical and Modern Physics Spring 2018

Python Class 10: Quantum Dynamics, or, Making Wavefunctions Wave

1. Introduction

Up to this point we have not discussed how quantum wavefunctions evolve in time. That silence ends
today. In what follows I want you to keep in mind the Python exercise in which you animated the motion
of a classical string. The goal in that exercise was to animate a triangle-shaped string by superposing
many sinusoidal modes with appropriately chosen coefficients. You made the string evolve in time by
including the time dependence appropriate for each of the normal modes.

In the PHYS 212E Supplementary Reading, Chapter 4, I introduced some sets of special-case quan-
tum wavefunctions. They are special because they are solutions of Schrödinger’s equation, and such
solutions correspond to states of definite energy. These special-case wavefunctions are analogous to the
classical normal modes on a string, in that they have simple time dependence. If at time t = 0 the
wavefunction is just one of these special-case functions, that is,

Ψ(x, t = 0) = ψn(x), (1)

then at a later time the wavefunction is simply

Ψ(x, t) = e−iEnt/h̄ψn(x). (2)

Remembering that complex exponentials can be written as a complex combination of sines and cosines
we see something that is sort of like the time dependence of classical normal modes:

Ψ(x, t) = cos(−Ent/h̄)ψn(x)− i sin(−Ent/h̄)ψn(x), (3)

except for the fact that there is an ‘extra’ imaginary term.
In the case of Eq. (2), which is appropriate for a special-case initial wavefunction, the factor with

exponential time dependence does not affect the probability density, because

ρ(x, t) = |Ψ(x, t)|2

= Ψ(x, t)∗Ψ(x, t)

= eiEnt/h̄ψn(x) e−iEnt/h̄ψn(x) (4)

= ψn(x)2, (5)

which is independent of time. But if the initial state is a linear combination of special-case wavefunctions,
we will see that the probability density does depend on the time, because not all the exponential factors
will disappear in the product Ψ(x, t)∗Ψ(x, t).

2. Linear combination of particle-in-a-box states

The special-case wavefunctions for a particle in a box are given by

ψPIB
n (x) =

{ √
2
L

sin
(
nπx
L

)
for 0 ≤ x ≤ L

0 otherwise
, (6)

1

with energies given by

EPIB
n = n2 × h2

8mL2
, (7)

In this exercise we will work with dimensionless variables like we did in Exercise #9:

x′ ≡ x

L
,

E ′ ≡ E
h2

8mL2

, and

t′ ≡ t
4mL2

hπ

In these variablesE ′ = n2, and e−iEt/h̄ = e−i2πE
′t′ , which means that h is effectively 1 in these variables.

Let’s start with the initial state

Ψ(x, 0) =
1√
2
ψPIB

1 (x) +
1√
2
ψPIB

2 (x). (8)

• Find your program that animated the motion of a classical string..

• Make a function that calculates special-case wavefunctions for a particle in a box, something like:

def psiPIB(n,x):

return sp.sqrt(2.)*sp.sin(n*sp.pi*x)

• Make another function that gives the time-dependent total wavefunction:

def psiTotal(x,t):

return (sp.exp(-1j*2*sp.pi*1*t)*psiPIB(1,x)

+ sp.exp(-1j*2*sp.pi*4.*t)*psiPIB(2,x))/sp.sqrt(2.)

Notice that the imaginary unit i is written as 1j, (with no space between the 1 and the j).

• Check to make sure that you can graph |Ψ(x, t)|2 at various times that you choose, like t = 0,
t = 0.5, t = 1.0, etc. This will require you to use the abs() function of python. As a simple
example, the following code

z = 3 + 1j*4

abs(z)

will return 5, which is the value of
√

32 + 52. To get |z|2, we just need to use abs(z)**2.

• Animate your plot. (If you don’t remember how to do this, just ask.)

• If not already there, add this line in your program within your animation while loop:

plt.title("t={0:.2f}".format(t))

This will provide a “clock” at the top of your graph.

• Determine the period of the “sloshing” of the probability density, and then the frequency. Compare
this with the frequency of light emitted when an electron makes a transition from the n = 2 to the
n = 1 state. Recall that hf = ∆E, and in our variables this becomes 1/T ′ = ∆E ′.

2

3. Linear combination of harmonic oscillator states – I

The first few special-case harmonic oscillator wavefunctions are given by

ψHO
0 (x) =

1

(a2π)1/4
e−

1
2

x2

a2 (9)

ψHO
1 (x) =

√
2
x

a

[
1

(a2π)1/4
e−

1
2

x2

a2

]
(10)

ψHO
2 (x) =

1√
2

(
2
x2

a2
− 1

) [
1

(a2π)1/4
e−

1
2

x2

a2

]
. (11)

For higher values of n, the wavefunctions are messier, but Python can handle them, as you will see below.
The general form for these special-case wavefunctions is

ψHO
n (x) =

1√
2nn! a 4

√
π
e−

x2

2a2 Hn

(x
a

)
, (12)

where a ≡
√
h̄/(mω), and the symbol Hn(x) refers to the nth Hermite polynomial. The set of Hermite

polynomials is extremely well studied — so well studied that there are routines to evaluate them in
Python, as well as most other numerical computation packages.

The definite energies for the harmonic oscillator states are given by

EHO
n =

(
n+

1

2

)
h̄ω. (13)

In this exercise we will work with dimensionless variables

x′ ≡ x

a
,

E ′ ≡ E

h̄ω
, and

t′ ≡ t

T
,

where ω and T are the classical angular frequency and period of the oscillator. In these dimensionless
variables, E ′ = (n + 1

2
), and e−iEt/h̄ = e−i2πE

′t′ , which again means that h is effectively 1 in these
variables.

Let’s start with the initial state

Ψ(x, 0) =
1√
2
ψHO

0 (x) +
1√
2
ψHO

1 (x). (14)

• Start a new version of your graphing program.

• At the top of your program include the line

from scipy import special

• Make a function that calculates special-case wavefunctions for a particle in a box:

3

def psiHO(n,x):

return special.eval_hermite(n, x)*sp.exp(-x**2/2.)/ \

sp.sqrt(2**n*special.factorial(n)*sp.sqrt(sp.pi))

Note that I have used a \ character to break my return statement over two lines to fit onto the
page. You may not need to do this in your notebook.

• Make another function that gives the time dependent total wavefunction:

def psiTotal(x,t):

return (exp(-1j*0.5*t)*psiHO(0,x) + exp(-1j*1.5*t)*psiHO(1,x))/sqrt(2.)

• Check to make sure that you can graph Ψ(x, t) at various times that you choose, like t = 0, t = 0.5,
t = 1.0, etc. NOTE: You will have to adjust the range of values include for the variable x in order
to see the whole wavefunction.

• Animate your plot.

• Determine the period of the “sloshing” of the probability density density, and then the frequency.
Compare this with the frequency of light emitted when an electron makes a transition from the
n = 1 to the n = 0 state. (Again, recall that hf = ∆E, and in our variables this becomes
1/T ′ = ∆E ′.)

• How does the frequency you found compare with the frequency of the classical analog to your
quantum oscillator?

4. Linear combination of harmonic oscillator states – II

Try this combination of harmonic oscillator states:

def psiTotal(x,t):

alpha = 2.

m = 40

total = 0

for n in range(m):

total += sp.exp(-1j*(0.5+n)*t)*alpha**n*psiHO(n,x)/ \

sp.sqrt(sp.special.factorial(n))

return sp.exp(-alpha**2/2)*total

This should be very classical!

4

	Introduction
	Linear combination of particle-in-a-box states
	Linear combination of harmonic oscillator states – I
	Linear combination of harmonic oscillator states – II

