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Abstract

QBism is an interpretation of quantum mechanics developed to resolve many of the paradoxes

that arise in more traditional interpretations taught to students, such as the Copenhagen inter-

pretation. I provide a worked example of a simple thought experiment, using undergraduate-level

quantum mechanics, that is articulated in the in language of, and informed by, the perspective

of QBism. The thought experiment uses an entangled three-particle Greenberger-Horne-Zeilinger

state.
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I. INTRODUCTION

Almost a century after the formulation of the modern theory of quantum mechanics,

scholarly debate continues regarding the foundational underpinnings of the theory. The first

two decades of the 21st century have seen the development of a new interpretation of the

theory, called QBism. (In its earlier incarnations this interpretation was known as Quantum

Bayesianism, but QBism has grown to encompass more than the term Bayesianism alone

might imply.) In an article in this journal proponents of QBism make the claim that the

interpretation “removes the paradoxes, conundra, and pseudo-problems that have plagued

quantum foundations for the past nine decades.”1 Other are not so convinced; in the pages

of this journal QBism has been referred to as “a radical minority view among physicists”

that isn’t really necessary to resolve foundational issues.2

Typical users of quantum mechanics do not need to be well-read in the quantum founda-

tions literature to be successful scientists; the shut-up-and-calculate approach to quantum

mechanics suffices in most professional applications. On the other hand, most users of

quantum mechanics are at least aware of the paradoxes and unresolved issues that are ad-

dressed by the scholarship of quantum foundations, and many are puzzled by them, and

interested in understanding at least the basics of the various approaches to resolving the

issues. Understanding how the QBist perspective fits within the variety of approaches to

quantum foundations is complicated for physicists outside of the field by the fact that QBism

is couched in language that is unfamiliar to the typical physicist, and it is rooted in a sub-

jective view of probability3–7 that isn’t generally taught to students of physics. To help

non-specialists gain insight into QBism, I demonstrate how the QBist perspective manifests

itself in a simple worked example using undergraduate-level quantum mechanics. The ex-

ample is a thought experiment using a three-particle version of the Einstein-Podolsky-Rosen

(EPR) experiment,8 that was constructed by Greenberger, Horne, and Zeilinger9–11 (here-

after GHZ); the example demonstrates the incompatibility of quantum mechanics with the

premises of the EPR program. The material in this paper provides a quantitative comple-

ment to the more qualitative discussion of a GHZ experiment in Chapter 14 of reference

12. (The discussion in this paper is narrowly focussed on the worked example, and does not

provide a complete introduction to QBism, nor a critical review of the perspective.)
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II. SUMMARY OF QBISM

This section gives a very brief summary of QBism, highlighting the features of the per-

spective that will arise in the context of the worked example in the following sections. The

reader interested in a more thorough introduction to QBism can turn to the material in

von Baeyer’s 2016 book intended for a general audience,12 Mermin’s 2012 Commentary in

Physics Today13 (with responses14), and the previously referenced article from this journal

by Fuchs, Mermin, and Schack1 (along with a response15). A comprehensive review article

summarized the state of the field in 2013,16 and a review from a philosophical perspective

appeared in 2017;17 other discussions outlining progress in the QBist program that go well

beyond issues considered in this paper are also available.18,19

QBism is an interpretation of quantum mechanics that is informed by the perspectives of

quantum information theory. To a QBist, a wavefunction (or state vector) does not represent

a element of physical reality; rather, it is a construct of an individual agent who is a user of

the quantum formalism. The state vector is a mathematical articulation of the individual

agent’s degree of belief about the system, and it encapsulates the information that she can

use to make probabilistic predictions of her future experiences, such as the outcome of an

experiment she performs. “The QBist wavefunction . . . is not a universally agreed-upon,

observer-independent formula, but an expression personal to each agent. It depends on each

agent’s knowledge, and is thus subjective.”20

The agents discussed in this paper are assumed to be sophisticated users of the quantum

mechanical formalism. State vectors are assigned by individual agents based on personal

experience; that experience may include results of past experiments, education, and commu-

nication with other scientists. An agent will update her state vector based on new personal

experiences, and calculate updated probabilities. To a QBist, subjective probabilities are

expressed in a willingness to gamble on outcomes with appropriately determined odds. From

this point of view, all state vectors are local, in the sense that every agent assigns a state

vector based on the experience of that agent. Experiences of an agent provide information

which the agent can use to update her state vector; there is no need to turn to concepts

like ‘wavefunction collapse.’ Results of experiments do not reveal elements of reality (in the

sense of EPR) — they simply provide information.

Statements like these can sound downright heretical to those of us educated in the tradi-
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tion of objective science in which the scientist’s role is to distance herself from the features of

the real world that are being interrogated. When applied in the context of a simple thought

experiment these attitudes appear less distant than they might initially seem from those of

typical users of quantum mechanics.

III. THE “EXPERIMENT”

The specific version of a GHZ experiment considered in this paper is based on that of

Mermin11: a source emits emits three spin-1
2

particles in the directions of three widely-

separated collaborators, Alice, Bob, and Casey, as illustrated in Fig. 1. Each of the collab-

orators has a detector that will read out the projection of the spin angular momentum of a

particle along an axis determined by the orientation of the detector. This is a generalization

of the kind of two-particle experiments envisioned by Bell21 that have been used to test

the quantum mechanical issues raised by EPR. In Bell’s original scenario he demonstrated

a disagreement between the predictions of a local realist program, like that of EPR, and

the predictions of quantum mechanics, but the disagreement manifests itself in terms of

an inequality based on statistical measures of the results of many experiments. In GHZ

experiments the contrast is more stark: the disagreement is evident in a single run of an

experiment. A local-realist program predicts the outcome of a specific experiment, and quan-

tum mechanics predicts something different — there is no need for statistics or inequalities

to see the disagreement.

Initial discussion of the experiment will be from the point of view of Alice as the agent.

Based on her knowledge of the source, and her previous experience using it, Alice is certain

about its behavior, and she assigns her initial state vector to be the pure entangled state

∣∣ψ0

〉
A

=
1√
2

(
|+z〉A |+z〉B |+z〉C − |−z〉A |−z〉B |−z〉C

)
, (1)

where |+z〉A is a single-particle spin-up state along Alice’s z-axis, which is the direction from

the source to Alice, and |−z〉A is the spin-down state along the same axis. The z-axes and

states for Bob and Casey are defined similarly. Alice’s certainty about her state assignment

is reflected in her use of a pure state.22

Alice, Bob, and Casey have agreed that in an initial run of the experiment Alice will

determine the component of the spin angular momentum of her particle along an axis in the
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FIG. 1. Configuration of Alice, Bob, and Casey in a GHZ experiment.

plane of the figure, which is her x-axis, while Bob and Casey will measure the component of

spin angular momenta of their particles along axes perpendicular to the plane of the figure,

which correspond to their y-axes.

Before the experiment Alice makes an initial prediction of what she will learn about the

readings of the three detectors. Being a skilled user of quantum mechanics, she recognizes

that this will be a probabilistic prediction. Alice, being the closest to the source, will be the

first to be able to read data about a spin. After doing so, she will update her predictions

about what she will learn about data recorded by Bob and Casey. Bob will be the next to

read data, after which he will send a message notifying Alice of his result. After eventually

getting around to reading her message, Alice will update her predictions again. Those

familiar with GHZ experiments will recognize that at this point Alice, to the extent that

she trusts the veracity of the message she has read, will know with certainty the result that

she will receive in a report from Casey. In the next section I follow Alice’s path to such

certainty in a sample run of the experiment.

IV. BETTING ON OUTCOMES

In order to facilitate making her predictions of the outcomes of the experiment, Alice

rewrites her state vector, |ψ0〉A, using relationships between the spin-1
2

angular momentum

5



eigenstates: ∣∣+z〉 =
1√
2

( ∣∣+x〉 +
∣∣−x〉) =

1√
2

( ∣∣+y〉 +
∣∣−y〉) (2)

and ∣∣−z〉 =
1√
2

( ∣∣+x〉− ∣∣−x〉) =
i√
2

(
−
∣∣+y〉 +

∣∣−y〉) . (3)

Using Eqs. (2 & 3) in Eq. (1) gives her the alternate expression of her initial state of the

particles,

∣∣ψ0

〉
A

=
1

2

( ∣∣+x〉
A

∣∣+y〉
B

∣∣+y〉
C

+
∣∣+x〉

A

∣∣−y〉
B

∣∣−y〉
C

+
∣∣−x〉

A

∣∣+y〉
B

∣∣−y〉
C

+
∣∣−x〉

A

∣∣−y〉
B

∣∣+y〉
C

)
. (4)

Note that in arriving at this result the terms containing the products
∣∣+x〉

A

∣∣+y〉
B

∣∣−y〉
C

,∣∣+x〉
A

∣∣−y〉
B

∣∣+y〉
C

,
∣∣−x〉

A

∣∣+y〉
B

∣∣+y〉
C

, and
∣∣−x〉

A

∣∣−y〉
B

∣∣+y〉
C

have all dropped out due

to cancellations.

Having completed this calculation, and before conducting the experiment, Alice is now

certain (from Eq.(4)) that when she collects all the data there will only be four possible

combinations recorded by Alice, Bob, and Casey respectively: (up, up, up), (up, down,

down), (down, up, down), and (down, down, up). The fact that there must be an odd

number of up’s in any run of the experiment is built in from the beginning by Alice’s state

assignment. Alice is also certain that each of these outcomes will occur with 25% probability.

That means, for example, that she is willing bet that the final result will be (down, down,

up) by paying up to $0.25 for a ticket that she will be able to redeem for $1 if the actual

result of the experiment is, in fact, (down, down, up). Alice is also certain that when she

reads the data for her spin she has a 50% chance of finding spin-up, and a 50% chance of

finding spin-down.

When Alice reads the output of the detector for her spin, let’s say she finds spin-up

along her x-axis. She can now update her probability calculations for the results that she

will eventually learn from Bob and Casey. Alice assigns a new state vector by eliminating

the final two terms in her state vector of Eq. (4); after normalization Alice’s updated state

vector is

∣∣ψ1

〉
A

=
1√
2

∣∣+x〉
A

( ∣∣+y〉
B

∣∣+y〉
C

+
∣∣−y〉

B

∣∣−y〉
C

)
. (5)
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Alice is now certain that the when she receives reports from Bob and Casey, she will learn

that that they detected the same thing, either both up or both down, and she calculates a

50% probability for each outcome. Alice’s interrogation of her particle has eliminated some

of the possible outcomes, with an increased probability for those that remain.

Alice notices that the value of up read by her detector means that she lost her bet that

the outcome would be (down, down, up), but this doesn’t mean it was a bad bet. It was

internally self-consistent, and it was as good as buying a similarly priced ticket betting that

the outcome of two successive flips of a believed-to-be-fair coin will be (tails, tails).

Some time after Alice looked at her detector, Bob reads the spin projection recorded by

his detector, finds it to be down, and he sends his message to Alice informing her of his

result. Does anything change for Alice at the time Bob reads the output of his detector?

No — it’s still a good bet, for example, to buy a ticket for up to $0.50 that will pay $1.00

if the results of the run will be (up, up, up), until the time she reads the message from Bob

informing her of the results. It is at this time of that the result recorded by Bob enters her

experience.

After reading the message from Bob informing her that that his spin was up, Alice updates

her prediction again. Alice’s state vector assigned after receiving this information is∣∣ψ2

〉
A

=
∣∣+x〉

A

∣∣+x〉
B

∣∣+x〉
C
, (6)

which leads Alice to predict with certainty the result that she will hear from Casey is spin-up.

Additional runs of experiments like this confirm Alice’s initial prediction (based on Eq. (4))

that there will always be an odd number of spin up’s reported.

Was there any wavefunction collapse in this tale? No, just an accumulation of information

by the agent Alice that enabled her to sift through the possibilities inherent in the initial

entangled state. Bob and Casey could perform analyses similar to Alice’s, i.e., we can treat

them as agents. There will be times when the three physicists, or three agents, are using

different state vectors, but all three will be able to make well-informed bets on the outcome

of a run based on their individual experiences.

If Alice, Bob, and Casey had all agreed to report spin components along the x-axis, Alice

could use a similar procedure to write her initial state vector in the form∣∣ψ0

〉
A

=
1

2

( ∣∣+x〉
A

∣∣+x〉
B

∣∣−x〉
C

+
∣∣+x〉

A

∣∣−x〉
B

∣∣+x〉
C

+
∣∣−x〉

A

∣∣+x〉
B

∣∣+x〉
C

+
∣∣−x〉

A

∣∣−x〉
B

∣∣−x〉
C

)
. (7)
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In this version of the experiment there are again only four possible data sets for a run, but

this time the number of up’s detected will be either 0 or 2.

If Alice’s detector reads spin-up she updates her state vector to

∣∣ψ′1〉A =
1√
2

∣∣+x〉
A

( ∣∣+x〉
B

∣∣−x〉
C

+
∣∣−x〉

B

∣∣+x〉
C

)
, (8)

and she knows that Bob and Casey will report to her that they have detected opposite spin

components. Upon reading a message from Bob that his detector also read spin-up, Alice is

certain that Casey will report to her a reading of spin-down.

V. IMPLICATIONS FOR REALISM

In both of the versions of a GHZ experiment considered in the previous section, the value

of a spin component recorded by Casey satisfies the criteria set by Einstein, Podolsky, and

Rosen for an element of reality because Alice, “without, in any way disturbing a system

[Casey’s particle], can predict with certainty (i.e., with probability equal to unity) the value

of a physical quantity [the direction of the projection of Casey’s spin along his x-axis], then

there exists an element of reality corresponding to this physical quantity.”8 Casey’s spin

projections in the examples above are not special, and similar experiments could demonstrate

that the other projections along the x- and y-axes satisfy the same criteria.

Alice and Bob each have friends who want to pursue the consequences of accepting the

realism of the spin projections. The friends have seen data from the first kind of experiment

in which Alice, Bob, and Casey record data for the spin components along the x-, y-, and

y-axes respectively. The realist friends then make predictions for the case in which all of the

collaborators detect spins along their x-axes. Specifically, they consider the case considered

at the conclusion of Section IV in which Alice detects up along her x-axis, Bob detects down

along his, and they predict the result for Casey’s x-axis detection.

From Alice’s determination of up along her x-axis, her friend assigns possible real values

to the y-components determined by Bob and Casey: Bob and Casey either both determine

up or both determine down. These two possibilities are illustrated graphically in the top

two rows in Fig. 2, with assignments for Alice, Bob, and Casey’s spins given left to right.

Alice’s detection is represented by the solid black arrow, and the inferred assumed-real

values for Bob’s and Casey’s spin components are represented by the dashed red arrows.

8



Assignments of Bob’s Friend
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FIG. 2. Assignment of spin components assuming x- and y-projections are elements of reality

represented by arrows. The top two rows are two the realist assignments for Alice, Bob, and

Casey’s spin components based on Alice’s reading of spin-up along her x-axis. Alice’s measured

spin-component is represented by the solid black arrow, and the inferred spin-components for Bob

and Casey are represented by the dashed-red arrows. The bottom two rows are similar realist

assignments based on Bob’s detection of spin-up along his x-axis.

After Bob determined his spin was up, his friend made similar possible assumed-real com-

ponent assignments that are illustrated in the bottom part of the figure. Alice’s friend and

Bob’s friend exchange messages and combine the information they have collected about the

presumed-to-be-real spin components, and find that there are two possible assignments for

the presumed-to-be-real components. This combined information is illustrated by the solid
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Assignments of Realist Friends
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After Their Consutation

FIG. 3. Assignment of spin components after combining information about the x and y-projections

of spin, assuming all are elements of reality. The solid black arrows combine the information

represented in the top and bottom portions of Fig. 2; the red dashed arrows are inferred from the

results of experiments measuring sx, sy, and sy.

black arrows in Fig. 3. They then use the result from Alice, Bob, and Casey’s first set of

experiments that a measurement of sy-sy-sx always yields an odd number of spin-ups, and

conclude that Casey must detect spin-up for the x-component for both of their possible

assignments; this is represented by the red dashed arrows in Fig. 3.

This is strikingly at odds with the conclusion reached by Alice at the end of Section

IV: she predicted that the news she would hear from Casey would be an observation of

down. When Alice does hear from Casey, she learns that her prediction was correct. (Alice’s

confidence in quantum mechanics has been supported by a GHZ experiment using photons

prepared in an entangled state.23) Where did the realist friends of Alice and Bob go wrong?

They assumed that that the projection of the spins along the y-axes of Alice and Bob had

real values, even though no measurements of the y-components were made, ignoring the

reminder of Peres that “unperformed experiments have no results.”24 Based on the outcome

of a single run of the experiment, Alice is prepared to give up the concept of realism as

articulated by Einstein, Podolsky, and Rosen.25
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VI. DISCUSSION

In the examples in this paper I have articulated a QBist perspective on a well-known

quantum mechanics problem. Framing the discussion in this way introduces the notion

that state assignments are personal to each agent, and obviates the need for a concept like

‘wavefunction collapse.’ Proponents of QBism argue that the perspective does much more

than simply provide a way to re-frame the discussion of standard problems: they argue it

opens new horizons for work in quantum foundations18,19, as well as news ways to think

about science in general.26 QBism with its roots in personalist Bayesian probability, raises

the question of whether it is possible to find a good representation of quantum mechanics

that can be framed entirely in terms of probabilities, without the necessity for abstract

states, complex amplitudes and Hilbert-space operators. While work in this field is beyond

the scope of this paper, it is worth noting the progress in this enterprise,16,19 and the most

general theorem yet in this direction.27
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